1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
//! Array multiple elements constructor syntax. //! //! While Rust does provide those, they require copy, and you cannot obtain the //! index that will be created. This crate provides syntax that fixes both of //! those issues. //! //! # Examples //! //! ``` //! # #[macro_use] //! # extern crate array_macro; //! # fn main() { //! assert_eq!(array![String::from("x"); 2], [String::from("x"), String::from("x")]); //! assert_eq!(array![x => x; 3], [0, 1, 2]); //! # } //! ``` #![no_std] #[doc(hidden)] pub extern crate core as __core; // This Token exists to prevent macro users from constructing their own // __ArrayVec objects which have Drop implementation that could cause UB. #[doc(hidden)] #[non_exhaustive] pub struct Token; impl Token { #[doc(hidden)] #[inline] pub const unsafe fn new() -> Self { Token } } /// Creates an array containing the arguments. /// /// This macro provides a way to repeat the same macro element multiple times /// without requiring `Copy` implementation as array expressions require. /// /// There are two forms of this macro. /// /// - Create an array from a given element and size. This will `Clone` the element. /// /// ``` /// use array_macro::array; /// assert_eq!(array![vec![1, 2, 3]; 2], [[1, 2, 3], [1, 2, 3]]); /// ``` /// /// Unlike array expressions this syntax supports all elements which implement /// `Clone`. /// /// - Create an array from a given expression that is based on index and size. /// This doesn't require the element to implement `Clone`. /// /// ``` /// use array_macro::array; /// assert_eq!(array![x => x * 2; 3], [0, 2, 4]); /// ``` /// /// This form can be used for declaring `const` variables. /// /// ``` /// use array_macro::array; /// const ARRAY: [String; 3] = array![_ => String::new(); 3]; /// assert_eq!(ARRAY, ["", "", ""]); /// ``` /// /// # Limitations /// /// When using a form with provided index it's not possible to use `break` /// or `continue` without providing a label. This won't compile. /// /// ```compile_fail /// use array_macro::array; /// loop { /// array![_ => break; 1]; /// } /// ``` /// /// To work-around this issue you can provide a label. /// /// ``` /// use array_macro::array; /// 'label: loop { /// array![_ => break 'label; 1]; /// } /// ``` #[macro_export] macro_rules! array { [$expr:expr; $count:expr] => {{ let value = $expr; $crate::array![_ => $crate::__core::clone::Clone::clone(&value); $count] }}; [$i:pat => $e:expr; $count:expr] => {{ const __COUNT: $crate::__core::primitive::usize = $count; #[repr(transparent)] struct __ArrayVec<T>(__ArrayVecInner<T>); impl<T> $crate::__core::ops::Drop for __ArrayVec<T> { fn drop(&mut self) { // This is safe as arr[..len] is initialized due to // __ArrayVecInner's type invariant. for val in &mut self.0.arr[..self.0.len] { unsafe { val.as_mut_ptr().drop_in_place() } } } } // Type invariant: arr[..len] must be initialized struct __ArrayVecInner<T> { arr: [$crate::__core::mem::MaybeUninit<T>; __COUNT], len: $crate::__core::primitive::usize, token: $crate::Token, } #[repr(C)] union __Transmuter<T> { init_uninit_array: $crate::__core::mem::ManuallyDrop<$crate::__core::mem::MaybeUninit<[T; __COUNT]>>, uninit_array: $crate::__core::mem::ManuallyDrop<[$crate::__core::mem::MaybeUninit<T>; __COUNT]>, out: $crate::__core::mem::ManuallyDrop<[T; __COUNT]>, } #[repr(C)] union __ArrayVecTransmuter<T> { vec: $crate::__core::mem::ManuallyDrop<__ArrayVec<T>>, inner: $crate::__core::mem::ManuallyDrop<__ArrayVecInner<T>>, } let mut vec = __ArrayVec(__ArrayVecInner { // An uninitialized `[MaybeUninit<_>; LEN]` is valid. arr: $crate::__core::mem::ManuallyDrop::into_inner(unsafe { __Transmuter { init_uninit_array: $crate::__core::mem::ManuallyDrop::new($crate::__core::mem::MaybeUninit::uninit()), } .uninit_array }), // Setting len to 0 is safe. Type requires that arr[..len] is initialized. // For 0, this is arr[..0] which is an empty array which is always initialized. len: 0, // This is an unsafe token that is a promise that we will follow type // invariant. It needs to exist as __ArrayVec is accessible for macro // callers, and we don't want them to cause UB if they go out of the way // to create new instances of this type. token: unsafe { $crate::Token::new() }, }); while vec.0.len < __COUNT { let $i = vec.0.len; let _please_do_not_use_continue_without_label; let value; struct __PleaseDoNotUseBreakWithoutLabel; loop { _please_do_not_use_continue_without_label = (); value = $e; break __PleaseDoNotUseBreakWithoutLabel; }; // This writes an initialized element. vec.0.arr[vec.0.len] = $crate::__core::mem::MaybeUninit::new(value); // We just wrote a valid element, so we can add 1 to len, it's valid. vec.0.len += 1; } // When leaving this loop, vec.0.len must equal to __COUNT due // to loop condition. It cannot be more as len is increased by 1 // every time loop is iterated on, and __COUNT never changes. // __ArrayVec is representation compatible with __ArrayVecInner // due to #[repr(transparent)] in __ArrayVec. let inner = $crate::__core::mem::ManuallyDrop::into_inner(unsafe { __ArrayVecTransmuter { vec: $crate::__core::mem::ManuallyDrop::new(vec), } .inner }); // At this point the array is fully initialized, as vec.0.len == __COUNT, // so converting an array of potentially uninitialized elements into fully // initialized array is safe. $crate::__core::mem::ManuallyDrop::into_inner(unsafe { __Transmuter { uninit_array: $crate::__core::mem::ManuallyDrop::new(inner.arr), } .out }) }}; }