1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
//!
//! This crate defines [`array!`] and other macros that can construct arrays.
//! Use simple syntax, make it more complex as requirements change.
//!
//! [`array!`] macro constructs arrays by repeating expression execution, possibly with enumeration bound to provided pattern.
//!
//! # Examples
//!
//! ```
//! # use array_fu::array;
//! # use rand::random;
//! let values: [f32; 2] = array![random(); 2];
//! ```
//!
//! This also means that expression type may not be `Copy` or event `Clone`.
//!
//! ```
//! # use array_fu::array;
//! # use std::sync::Mutex;
//! let values = array![Mutex::new(1); 2];
//! ```
//!
//! See more examples in the [`array!`] macro documentation.
//!
//!
//! [`collect_array!`] macro constructs arrays by repeating expression execution with elements from iterators bound to provided patterns.
//!
//! # Examples
//!
//! ```
//! # use array_fu::collect_array;
//! let opt = collect_array![x in 1.., y in 2.. => x + y; where x * y > 10; 3];
//!
//! assert_eq!(opt, Some([7, 9, 11]));
//! ```
//!
//! ```
//! # use array_fu::collect_array;
//! let values = collect_array![(x, y) in [(1, 2), (3, 4), (5, 6)] => x + y; 3];
//!
//! assert_eq!(values, Some([3, 7, 11]));
//! ```
//!
//! See more examples in the [`collect_array!`] macro documentation.
//!
#![no_std]

use core::{
    mem::{self, MaybeUninit},
    ptr,
};

#[doc(hidden)]
pub type Usize = usize;

#[doc(hidden)]
pub use core::{iter::IntoIterator, num::Wrapping, ops::Not};

#[doc(hidden)]
pub struct DontBreakFromElementExpressionWithoutLabel;

#[doc(hidden)]
pub fn type_name_of_val<T: ?Sized>(_val: &T) -> &'static str {
    ::core::any::type_name::<T>()
}

#[doc(hidden)]
pub struct PartiallyInitArray<T, const N: usize> {
    array: [MaybeUninit<T>; N],
    init: usize,
}

impl<T, const N: usize> PartiallyInitArray<T, N> {
    pub fn uninit() -> Self {
        PartiallyInitArray {
            // Could be written as `array![MaybeUninit::uninit(); N]`
            array: unsafe {
                // SAFETY: An uninitialized `[MaybeUninit<_>; N]` is valid.
                MaybeUninit::uninit().assume_init()
            },
            init: 0,
        }
    }

    /// # Safety
    ///
    /// Must be called at most `N` times.
    /// Or equivalently, until `is_init` returns false.
    #[inline]
    pub unsafe fn write(&mut self, value: T) {
        debug_assert!(self.init < N);
        self.array[self.init].write(value);
        self.init += 1;
    }

    #[inline]
    pub fn is_init(&self) -> bool {
        self.init == N
    }

    /// # Safety
    ///
    /// Must be called after `write` was called exactly `N` times.
    /// Or equivalently, when `is_init` returns true.
    #[inline]
    pub unsafe fn assume_init(self) -> [T; N] {
        debug_assert_eq!(self.init, N);
        let array = {
            // SAFETY: Fully initialized.
            mem::transmute_copy::<[MaybeUninit<T>; N], [T; N]>(&self.array)
        };
        mem::forget(self);
        array
    }

    #[inline]
    pub fn try_init(self) -> Option<[T; N]> {
        if self.init == N {
            let array = unsafe {
                // SAFETY: Fully initialized.
                mem::transmute_copy::<[MaybeUninit<T>; N], [T; N]>(&self.array)
            };
            mem::forget(self);
            Some(array)
        } else {
            None
        }
    }
}

impl<T, const N: usize> Drop for PartiallyInitArray<T, N> {
    fn drop(&mut self) {
        let slice = &mut self.array[..self.init];
        unsafe { ptr::drop_in_place(slice as *mut [MaybeUninit<T>] as *mut [T]) }
    }
}

#[doc(hidden)]
#[macro_export]
macro_rules! pattern_list {
    ($ph:pat, $($pt:pat,)*) => {
        $crate::pattern_list!($($pt,)* | $ph )
    };
    ($ph:pat, $($pt:pat,)* | $r:pat) => {
        $crate::pattern_list!($($pt,)* | ($r, $ph) )
    };
    (| $r:pat) => {
        $r
    };
}

/// Constructs arrays by repeating expression execution,
/// possibly with enumeration bound to provided pattern.
///
/// # Syntax
///
/// On the basic level, arrays construction happens by repeating execution of provided expression multiple times.
/// Note that the expression itself appears exactly once in expanded code.
/// And length expression is executed in const context exactly once.
///
/// ```
/// # use array_fu::array;
/// let values = array![1; 2];
///
/// assert_eq!(values, [1, 1]);
/// ```
///
/// Unlike built-in syntax `[$expr; $size]` `array!` runs expression `$size` times instead of copying result.
/// This means that expression will exhibit its side effects for each array element,
/// and value can change freely.
///
/// ```
/// # use array_fu::array;
/// # use rand::random;
/// let values: [f32; 2] = array![random(); 2];
/// ```
///
/// This also means that expression type may not be `Copy` or event `Clone`.
///
/// ```
/// # use array_fu::array;
/// # use std::sync::Mutex;
/// let values = array![Mutex::new(1); 2];
/// ```
///
/// ## Enumerate
///  
/// `array!` macro supports enumerating while constructing array elements.
///
/// `array!($pat => $expr ; $n)` does the trick. That's it, simply add `$pat =>` before element expression.
///
/// `$pat` must be valid pattern. And it will be bound to numbers starting from 0.
/// Bound value can be used in the element expression.
///
/// ```
/// # use array_fu::array;
/// let values = array![x => x + 1; 3];
///
/// assert_eq!(values, [1, 2, 3]);
/// ```
///
/// ## Predicates
///
/// `array!` macro supports predicated that are evaluated before element expression for each constructed element.
/// When predicate does not pass, element expression is not executed.
/// Value bound to pattern will be updated before trying again.
///
/// ```
/// # use array_fu::array;
/// let values = array![x => x + 1; where x & 1 == 1; 3];
///
/// assert_eq!(values, [2, 4, 6]);
/// ```
///
/// It is possible to make array expression infeasible.
/// For example by providing predicate that never evaluates to true.
///
/// ```should_panic
/// # use array_fu::array;
///
/// // predicate always evaluates to `false`
/// // making it impossible to construct array of size 1 or greater.
/// // This will lead to a panic with descriptive message.
/// // `[u8; 1]` type forces enumerator to be `u8` allowing it to fail faster.
/// let _: [u8; 1] = array![x => x; where false; 1];
/// ```
///
/// ## Control flow
///
/// Element expressions and conditions are executed in the inner loop scope but in the outer function.
/// This makes it possible to perform early return from macro invocation using `return` and `break` and `continue` statements.
/// `continue` and `break` won't compile without a label. If label is provided, they will behave as expected.
/// `return` would exit function where macro is called.
/// If size of the array is `0`, element and condition expressions won't be executed even once
/// and `return` statement won't exit the function.
/// This behavior is different from `[return; 0]` which performs early return regardless.
///
/// ```
/// # use array_fu::array;
/// array![return; 1];
/// ```
///
/// ```compile_fail
/// # use array_fu::array;
/// array![break; 1];
/// ```
///
/// ```compile_fail
/// # use array_fu::array;
/// array![continue; 1];
/// ```
///
/// ```
/// # use array_fu::array;
/// 'a: loop { array![break 'a; 1]; };
/// ```
///
/// ```
/// # use array_fu::array;
/// 'a: for _ in 0..3 { array![continue 'a; 1]; };
/// ```
///
/// ## List
///
/// For consistency with built-in syntax, arrays may be constructed with a list of expressions.
///
/// ```
/// # use array_fu::array;
/// let values = array![1, 2, 3];
///
/// assert_eq!(values, [1, 2, 3]);
/// ```
#[macro_export]
macro_rules! array {
    ($($e:expr),* $(,)?) => { [$($e,)*] };

    ($e:expr; $n:expr) => {{
        $crate::array!( _ => $e ; $n )
    }};

    ($p:pat => $e:expr $( ; where $( $cond:expr ),+ )? ; $n:expr) => {{
        #[allow(unused_mut)]
        let mut array = $crate::PartiallyInitArray::<_, $n>::uninit();

        let mut i = $crate::Wrapping(0);
        loop {
            let value = i.0;
            i += 1;

            if i.0 == 0 {
                panic!("Failed to initialize array using whole '{}' space", $crate::type_name_of_val(&i.0));
            }

            if array.is_init() {
                // This is the only way ouf of the loop without leaving outer scope.
                break;
            }

            match value {
                $p => {
                    #[allow(unreachable_code)]
                    {
                        $($(
                            #[allow(unused_variables)]
                            #[warn(unreachable_code)]
                            let cond = $cond;

                            if <bool as $crate::Not>::not(cond) { continue; }
                        )+)?

                        #[allow(unused_variables)]
                        let elem;

                        #[allow(unused_variables)]
                        let dont_continue_in_element_expression_without_label;

                        loop {
                            #[allow(unused)]
                            {
                                dont_continue_in_element_expression_without_label = ();
                            }

                            #[allow(unused_variables)]
                            #[warn(unreachable_code)]
                            let value = $e;

                            elem = value;

                            break $crate::DontBreakFromElementExpressionWithoutLabel;
                        };

                        unsafe {
                            array.write(elem);
                        }
                    }
                }
                #[allow(unreachable_patterns)]
                _ => continue,
            }
        }

        unsafe {
            // SAFETY: `is_init` returned true.
            array.assume_init()
        }
    }};
}

/// Constructs arrays by repeating expression
/// with elements from iterators bound to provided patterns.
///
/// Creating arrays from iterators is really handy.
/// But it comes at price - there could be not enough values in the iterator to fill the array.
///
/// Therefore this macro returns `Option`.
/// `Some` array is returned if there were enough values.
/// Otherwise `None` is returned.
///
/// ```
/// # use array_fu::collect_array;
/// let opt = collect_array![1..; 3];
///
/// assert_eq!(opt, Some([1, 2, 3]));
/// ```
///
/// `None` is returned otherwise.
///
/// ```
/// # use array_fu::collect_array;
/// let opt = collect_array![1..3; 3];
///
/// assert_eq!(opt, None, "There's only two elements in 1..3");
/// ```
///
/// Similarly to `array!` macro, `collect_array` can be given a pattern to bind iterator elements
/// and expression to produce array elements.
///
/// ```
/// # use array_fu::collect_array;
/// let opt = collect_array![x in 1.. => x / 2; 3];
///
/// assert_eq!(opt, Some([0, 1, 1]));
/// ```
///
/// But why stop there? Multiple iterators can be collected into an array!
///
/// ```
/// # use array_fu::collect_array;
/// let opt = collect_array![x in 1.., y in 2.. => x + y; 3];
///
/// assert_eq!(opt, Some([3, 5, 7]));
/// ```
///
/// Surely it also supports predicates.
/// When predicate evaluates to `false`, next items are taken from all iterators.
///
/// ```
/// # use array_fu::collect_array;
/// let opt = collect_array![x in 1.., y in 2.. => x + y; where x * y > 10; 3];
///
/// assert_eq!(opt, Some([7, 9, 11]));
/// ```
///
/// Patterns support destructuring.
///
/// ```
/// # use array_fu::collect_array;
/// let values = collect_array![(x, y) in [(1, 2), (3, 4), (5, 6)] => x + y; 3];
///
/// assert_eq!(values, Some([3, 7, 11]));
/// ```
///
/// And patterns don't have to be irrefutable.
///
/// ```
/// # use array_fu::collect_array;
/// let values = collect_array![(1, y) in [(1, 2), (3, 4), (1, 6)] => y; 2];
///
/// assert_eq!(values, Some([2, 6]));
/// ```
#[macro_export]
macro_rules! collect_array {
    ($it:expr; $n:expr) => {
        $crate::collect_array!(e in $it => e ; $n)
    };

    ($e:expr; $ph:pat in $ih:expr $( , $pt:pat in $it:expr )* $(; where $($cond:expr),+ )? ; $n:expr) => {{
        #[allow(unused_mut)]
        let mut array = $crate::PartiallyInitArray::<_, $n>::uninit();

        let iter = $crate::IntoIterator::into_iter($ih);
        $( let iter = iter.zip($it); )*
        let mut iter = iter;

        loop {
            if array.is_init() {
                break;
            }

            match iter.next() {
                None => break,
                Some($crate::pattern_list!($ph, $( $pt, )*)) => {
                    #[allow(unreachable_code)]
                    {
                        $($(
                            #[allow(unused_variables)]
                            #[warn(unreachable_code)]
                            let cond = $cond;

                            if <bool as $crate::Not>::not(cond) { continue; }
                        )+)?

                        #[allow(unused_variables)]
                        let elem;

                        #[allow(unused_variables)]
                        let dont_continue_in_element_expression_without_label;

                        loop {
                            #[allow(unused)]
                            {
                                dont_continue_in_element_expression_without_label = ();
                            }

                            #[allow(unused_variables)]
                            #[warn(unreachable_code)]
                            let value = $e;

                            elem = value;

                            break $crate::DontBreakFromElementExpressionWithoutLabel;
                        };

                        unsafe {
                            array.write(elem);
                        }
                    }
                }
                #[allow(unreachable_patterns)]
                _ => continue,
            }
        }

        array.try_init()
    }};

    ($( $p:pat in $i:expr ),+ => $e:expr $(; where $($cond:expr),+ )? ; $n:expr) => {
        $crate::collect_array!($e; $($p in $i),+ $( ; where $($cond),+ )? ; $n)
    };
}

#[test]
fn test_expression_repeat() {
    let mut i = 0;
    assert_eq!(array!({ i+=1; i }; 2), [1, 2]);
}

#[test]
fn test_comprehension_repeat() {
    assert_eq!(array!(x => x * 2; 3), [0, 2, 4]);
    assert_eq!(array!(x => x * 2; where x & 1 == 1; 3), [2, 6, 10]);
}

#[test]
fn test_comprehension_iter() {
    assert_eq!(
        collect_array!(x * 2; x in 1..3; 3),
        None,
        "There's not enough elements in iterator"
    );
    assert_eq!(
        collect_array!(x * 2; x in 1..; 3),
        Some([2, 4, 6]),
        "1*2, 2*2, 3*2"
    );
    assert_eq!(
        collect_array!(x * y; x in 1.., y in (1..3).cycle(); where x > 3, y == 1; 3),
        Some([5, 7, 9]),
        "x = 1,2,3,4,5,6,7,8,9
         y = 1,2,1,2,1,2,1,2,1
         r = x,x,x,x,5,x,7,x,9"
    );

    assert_eq!(
        collect_array!(x in 0.. => x * 2; where x & 1 == 1; 3),
        Some(array!(x => x * 2; where x & 1 == 1; 3)),
    );

    assert_eq!(
        collect_array!(x in 0.., _y in 1.., _z in 2.., _w in 3..5 => x; where x & 1 == 1; 3),
        None,
    );
}

#[test]
fn test_bail() {
    array!(return; 2);
    panic!();
}

#[test]
fn test_bail_condition() {
    array!(_ => 0; where return; 1);
    panic!();
}

#[test]
fn test_bail_iter() {
    collect_array!(_ in 1.. => 0; where return; 1);
    panic!();
}

#[test]
#[should_panic]
fn test_bail_panic() {
    array!(return; 0);
    panic!();
}

#[test]
#[should_panic]
fn test_bail_condition_panic() {
    array!(_ => 0; where return; 0);
    panic!();
}