1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
use std::cmp::Ordering;
use crate::{
core::prelude::*,
errors::prelude::*,
extensions::prelude::*,
validators::prelude::*,
};
/// ArrayTrait - Array Manipulate functions
pub trait ArrayManipulate<T: ArrayElement> where Array<T>: Sized + Clone {
/// Insert values along the given axis for the given indices
///
/// # Arguments
///
/// * `index` - indices before which values is inserted
/// * `values` - vector representing values to insert into array
/// * `axis` - axis along which to insert values. if None, then array is flattened first
///
/// # Examples
///
/// ```
/// use arr_rs::prelude::*;
///
/// let arr = Array::new(vec![1., 2., 3., 4.], vec![4]).insert(&[1], &Array::single(1.).unwrap(), None);
/// assert_eq!(array!(f64, [1., 1., 2., 3., 4.]), arr);
/// let arr = Array::new(vec![1., 2., 3., 4.], vec![4]).insert(&[1, 3], &Array::single(1.).unwrap(), None);
/// assert_eq!(array!(f64, [1., 1., 2., 3., 1., 4.]), arr);
/// ```
fn insert(&self, indices: &[usize], values: &Array<T>, axis: Option<usize>) -> Result<Array<T>, ArrayError>;
/// Delete values along the given axis
///
/// # Arguments
///
/// * `indices` - vector representing values to delete from array
/// * `axis` - axis along which to find unique values. if None, then array is flattened first
///
/// # Examples
///
/// ```
/// use arr_rs::prelude::*;
///
/// let arr = Array::new(vec![1., 2., 3., 4.], vec![4]).delete(&[1], None);
/// assert_eq!(array!(f64, [1., 3., 4.]), arr);
/// let arr = Array::new(vec![1., 2., 3., 4.], vec![4]).delete(&[2, 3], None);
/// assert_eq!(array!(f64, [1., 2.]), arr);
/// ```
fn delete(&self, indices: &[usize], axis: Option<usize>) -> Result<Array<T>, ArrayError>;
/// Append values to the end of an array
///
/// # Arguments
///
/// * `values` - vector representing values to append to array
/// * `axis` - axis along which to append values. if None, then array is flattened first
///
/// # Examples
///
/// ```
/// use arr_rs::prelude::*;
///
/// let arr = Array::new(vec![1., 2., 3., 4.], vec![4]).append(&Array::single(1.).unwrap(), None);
/// assert_eq!(array!(f64, [1., 2., 3., 4., 1.]), arr);
/// let arr = Array::new(vec![1., 2., 3., 4.], vec![4]).append(&Array::flat(vec![1., 3.]).unwrap(), None);
/// assert_eq!(array!(f64, [1., 2., 3., 4., 1., 3.]), arr);
/// ```
fn append(&self, values: &Array<T>, axis: Option<usize>) -> Result<Array<T>, ArrayError>;
/// Reshapes an array
///
/// # Arguments
///
/// * `shape` - vector representing new array shape
///
/// # Examples
///
/// ```
/// use arr_rs::prelude::*;
///
/// let arr: Array<f64> = Array::new(vec![1., 2., 3., 4.], vec![4]).unwrap();
/// assert_eq!(array!(f64, [1., 2., 3., 4.]).unwrap(), arr);
/// let arr = arr.reshape(&[2, 2]);
/// assert_eq!(array!(f64, [[1., 2.], [3., 4.]]), arr);
/// ```
fn reshape(&self, shape: &[usize]) -> Result<Array<T>, ArrayError>;
/// Resizes an array,
///
/// # Arguments
///
/// * `shape` - vector representing new array shape
///
/// # Examples
///
/// ```
/// use arr_rs::prelude::*;
///
/// let arr = Array::new(vec![1., 2., 3., 4.], vec![4]);
/// assert_eq!(array!(f64, [1, 2, 3, 4]), arr);
/// let array = arr.resize(&[2, 2]);
/// assert_eq!(array!(f64, [[1, 2], [3, 4]]), array);
/// let array = arr.resize(&[4]);
/// assert_eq!(array!(f64, [1, 2, 3, 4]), array);
/// let array = arr.resize(&[8]);
/// assert_eq!(array!(f64, [1, 2, 3, 4, 1, 2, 3, 4]), array);
/// ```
fn resize(&self, shape: &[usize]) -> Result<Array<T>, ArrayError>;
/// Find the unique elements of an array
///
/// # Arguments
///
/// * `axis` - the axis along which to split. optional, if None, array will be flattened
///
/// # Examples
///
/// ```
/// use arr_rs::prelude::*;
///
/// let arr = Array::new(vec![1, 1, 2, 3, 3, 4], vec![6]).unwrap();
/// assert_eq!(array!(i32, [1, 2, 3, 4]), arr.unique(None));
/// let arr = Array::new(vec![1, 2, 3, 2, 1], vec![5]).unwrap();
/// assert_eq!(array!(i32, [1, 2, 3]), arr.unique(None));
/// ```
fn unique(&self, axis: Option<isize>) -> Result<Array<T>, ArrayError>;
/// Return a contiguous flattened array
///
/// # Examples
///
/// ```
/// use arr_rs::prelude::*;
///
/// let expected = vec![8];
///
/// let arr_1 = Array::new(vec![1,2,3,4,5,6,7,8], vec![2, 4]).unwrap();
/// assert_eq!(expected, arr_1.ravel().get_shape().unwrap());
///
/// let arr_2 = Array::new(vec![1,2,3,4,5,6,7,8], vec![4, 2]).unwrap();
/// assert_eq!(expected, arr_2.ravel().get_shape().unwrap());
///
/// let arr_3 = Array::new(vec![1,2,3,4,5,6,7,8], vec![2, 2, 2]).unwrap();
/// assert_eq!(expected, arr_3.ravel().get_shape().unwrap());
/// ```
fn ravel(&self) -> Result<Array<T>, ArrayError>;
/// Convert array to at least n dimension
///
/// # Arguments
///
/// * `n` - desired dimension
///
/// # Examples
///
/// ```
/// use arr_rs::prelude::*;
///
/// let arr = Array::new(vec![1], vec![1]).unwrap();
/// assert_eq!(array!(i32, [[1]]), arr.atleast(2));
/// assert_eq!(array!(i32, [[[1]]]), arr.atleast(3));
/// ```
fn atleast(&self, n: usize) -> Result<Array<T>, ArrayError>;
/// Trim the leading and/or trailing zeros from a 1D array
///
/// # Examples
///
/// ```
/// use arr_rs::prelude::*;
///
/// let arr = Array::flat(vec![0, 0, 1, 2, 3, 4, 0, 0]);
/// assert_eq!(array!(i32, [1, 2, 3, 4]), arr.trim_zeros());
/// ```
fn trim_zeros(&self) -> Result<Array<T>, ArrayError>;
/// Performs cycle().take(n), returning flattened array
///
/// # Arguments
///
/// n: number of elements to take
///
/// # Examples
///
/// ```
/// use arr_rs::prelude::*;
///
/// let arr = Array::flat(vec![1, 2, 3, 4]);
/// assert_eq!(array!(i32, [1, 2]), arr.cycle_take(2));
/// ```
fn cycle_take(&self, n: usize) -> Result<Array<T>, ArrayError>;
}
impl <T: ArrayElement> ArrayManipulate<T> for Array<T> {
fn insert(&self, indices: &[usize], values: &Self, axis: Option<usize>) -> Result<Array<T>, ArrayError> {
if indices.iter().any(|&i| i > self.shape[axis.unwrap_or(0)]) { return Err(ArrayError::OutOfBounds { value: "index" }) }
values.ndim()?.is_dim_supported(&(1 ..= self.ndim()?).collect::<Vec<usize>>())?;
if let Some(axis) = axis {
vec![indices.len()].is_broadcastable(&self.get_shape()?)?;
let mut arrays = self.split_axis(axis)?;
let self_rem = self.get_shape()?.remove_at(axis);
let self_rem_len = self_rem.into_iter().product::<usize>();
let mut values = values.to_array_ndim(self.ndim()?)?;
let values_shape_tmp = values.get_shape()?.swap_ext(0, axis);
for i in (0 .. self.ndim()?).collect::<Vec<usize>>().remove_at(axis).reverse_ext() {
let self_shape_at_i = self.get_shape()?[i];
if values_shape_tmp[i] > self_shape_at_i || self_shape_at_i % values_shape_tmp[i] != 0 {
return Err(ArrayError::BroadcastShapeMismatch)
} else if values_shape_tmp[i] < self_shape_at_i {
values = values
.repeat(&[self_shape_at_i / values_shape_tmp[i]], Some(0))?
.to_array_ndim(self.ndim()?)?;
}
};
let mut values =
if indices.len() > 1 {
let values =
if values.len()? == self_rem_len { values.repeat(&[indices.len()], Some(0))? }
else { values };
values.moveaxis(vec![axis as isize], vec![0])
.ravel()
.split(indices.len(), None)?
} else { vec![values] };
for (i, v) in indices.to_vec().reverse_ext().into_iter().zip(values.reverse_ext()) {
arrays.insert(i, v.clone())
}
let partial = arrays.into_iter()
.map(|arr| arr.get_elements())
.collect::<Vec<Result<Vec<T>, _>>>()
.has_error()?.into_iter()
.flat_map(|v| v.unwrap())
.collect::<Array<T>>();
let new_shape = self.get_shape()?
.update_at(axis, partial.len()? / self_rem_len)
.swap_ext(0, axis);
let partial = partial.reshape(&new_shape)?;
let transpose_shape = (1 .. self.ndim()? as isize).collect::<Vec<isize>>().insert_at(axis, 0);
partial.transpose(Some(transpose_shape))
} else {
values.ndim()?.is_dim_supported(&[1])?;
let (indices, values) = Array::broadcast_h2(&Array::flat(indices.to_vec())?, &values.ravel()?)?;
let values = values.get_elements()?;
let mut elements = self.get_elements()?;
indices.get_elements()?.into_iter()
.zip(&values)
.sorted_by(|(a, _), (b, _)| a.cmp(b)).rev()
.for_each(|(i, v)| elements.insert(i, v.clone()));
elements.to_array()
}
}
fn delete(&self, indices: &[usize], axis: Option<usize>) -> Result<Array<T>, ArrayError> {
let mut indices = indices.to_vec();
indices.sort();
indices.dedup();
indices = indices.reverse_ext();
if let Some(axis) = axis {
self.apply_along_axis(axis, |arr| arr.delete(&indices, None))
} else {
let mut elements = self.get_elements()?;
if indices.iter().any(|&i| i >= elements.len()) { return Err(ArrayError::OutOfBounds { value: "index" }) }
indices.iter().for_each(|&i| { elements.remove(i); });
elements.to_array()
}
}
fn append(&self, values: &Self, axis: Option<usize>) -> Result<Array<T>, ArrayError> {
if let Some(axis) = axis {
self.axis_in_bounds(axis)?;
if self.ndim().is_equal(&values.ndim()).is_err() {
return Err(ArrayError::ParameterError { param: "values", message: "input array should have the same dimension as the original one", })
} else if self.get_shape()?.remove_at(axis).is_equal(&values.get_shape()?.remove_at(axis)).is_err() {
return Err(ArrayError::ParameterError { param: "axis", message: "input array dimensions for the concatenation axis must match exactly", })
}
let mut arrays = self.split_axis(axis)?;
let self_rem = self.get_shape()?.remove_at(axis);
let self_rem_len = self_rem.into_iter().product::<usize>();
let values = values.split_axis(axis)?;
arrays.extend_from_slice(&values);
let array = arrays.into_iter().flatten().collect::<Array<T>>();
let new_shape = self.get_shape()?.update_at(axis, array.len()? / self_rem_len);
let tmp_shape = new_shape.clone().swap_ext(0, axis);
let transpose_shape = (1 .. self.ndim()? as isize).collect::<Vec<isize>>().insert_at(axis, 0);
array.reshape(&tmp_shape).transpose(Some(transpose_shape)).reshape(&new_shape)
} else {
let mut elements = self.get_elements()?;
elements.extend_from_slice(&values.get_elements()?);
elements.to_array()
}
}
fn reshape(&self, shape: &[usize]) -> Result<Array<T>, ArrayError> {
shape.to_vec().matches_values_len(&self.get_elements()?)?;
Array::new(self.elements.clone(), shape.to_vec())
}
fn resize(&self, shape: &[usize]) -> Result<Array<T>, ArrayError> {
self.get_elements()?.into_iter().cycle()
.take(shape.iter().product::<usize>())
.collect::<Self>()
.reshape(shape)
}
fn unique(&self, axis: Option<isize>) -> Result<Array<T>, ArrayError> {
if let Some(axis) = axis {
let axis = self.normalize_axis(axis);
self.apply_along_axis(axis, |arr| arr.unique(None))
} else {
let mut new_elements = self.get_elements()?.into_iter()
.sorted_by(|a, b| a.clone().partial_cmp(b).unwrap_or(Ordering::Equal))
.collect::<Vec<T>>();
new_elements.dedup();
new_elements.to_array()
}
}
fn ravel(&self) -> Result<Array<T>, ArrayError> {
self.elements.to_array()
}
fn atleast(&self, n: usize) -> Result<Array<T>, ArrayError> {
match n {
0 => Ok(self.clone()),
1 => Self::atleast_1d(self),
2 => Self::atleast_2d(self),
3 => Self::atleast_3d(self),
_ => Err(ArrayError::UnsupportedDimension { supported: vec![0, 1, 2, 3] }),
}
}
fn trim_zeros(&self) -> Result<Array<T>, ArrayError> {
self.is_dim_supported(&[1])?;
self.get_elements()?
.into_iter().rev()
.skip_while(|e| e.clone() == T::zero())
.collect::<Vec<_>>()
.into_iter().rev()
.skip_while(|e| e.clone() == T::zero())
.collect::<Vec<_>>()
.to_array()
}
fn cycle_take(&self, n: usize) -> Result<Array<T>, ArrayError> {
Ok(self.into_iter().cycle().take(n).cloned().collect::<Array<T>>())
}
}
impl <T: ArrayElement> ArrayManipulate<T> for Result<Array<T>, ArrayError> {
fn insert(&self, indices: &[usize], values: &Array<T>, axis: Option<usize>) -> Result<Array<T>, ArrayError> {
self.clone()?.insert(indices, values, axis)
}
fn delete(&self, indices: &[usize], axis: Option<usize>) -> Result<Array<T>, ArrayError> {
self.clone()?.delete(indices, axis)
}
fn append(&self, values: &Array<T>, axis: Option<usize>) -> Result<Array<T>, ArrayError> {
self.clone()?.append(values, axis)
}
fn reshape(&self, shape: &[usize]) -> Result<Array<T>, ArrayError> {
self.clone()?.reshape(shape)
}
fn resize(&self, shape: &[usize]) -> Result<Array<T>, ArrayError> {
self.clone()?.resize(shape)
}
fn unique(&self, axis: Option<isize>) -> Result<Array<T>, ArrayError> {
self.clone()?.unique(axis)
}
fn ravel(&self) -> Result<Array<T>, ArrayError> {
self.clone()?.ravel()
}
fn atleast(&self, n: usize) -> Result<Array<T>, ArrayError> {
self.clone()?.atleast(n)
}
fn trim_zeros(&self) -> Result<Array<T>, ArrayError> {
self.clone()?.trim_zeros()
}
fn cycle_take(&self, n: usize) -> Result<Array<T>, ArrayError> {
self.clone()?.cycle_take(n)
}
}
impl <T: ArrayElement> Array<T> {
fn atleast_1d(&self) -> Result<Array<T>, ArrayError> {
if !self.ndim()? >= 1 { Ok(self.clone()) }
else { self.reshape(&[1]) }
}
fn atleast_2d(&self) -> Result<Array<T>, ArrayError> {
if self.ndim()? >= 2 { Ok(self.clone()) }
else {
match self.ndim()? {
0 => self.reshape(&[1, 1]),
1 => self.reshape(&[1, self.get_shape()?[0]]),
_ => self.reshape(&[self.get_shape()?[0], 1]),
}
}
}
fn atleast_3d(&self) -> Result<Array<T>, ArrayError> {
if self.ndim()? >= 3 { Ok(self.clone()) }
else {
match self.ndim()? {
0 => self.reshape(&[1, 1, 1]),
1 => self.reshape(&[1, self.get_shape()?[0], 1]),
2 => self.reshape(&[self.get_shape()?[0], self.get_shape()?[1], 1]),
_ => Ok(self.clone()),
}
}
}
}
impl <T: ArrayElement> Array<T> {
pub(crate) fn normalize_axis(&self, axis: isize) -> usize {
if axis < 0 { (axis + self.ndim().unwrap() as isize) as usize }
else { axis as usize }
}
pub(crate) fn normalize_axis_dim(&self, axis: isize, ndim: usize) -> usize {
if axis < 0 { (self.ndim().unwrap() as isize + axis + ndim as isize) as usize }
else { axis as usize }
}
}