1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
use crate::{
core::prelude::*,
errors::prelude::*,
extensions::prelude::*,
};
/// ArrayTrait - Array Indexing functions
pub trait ArrayIndexing<T: ArrayElement> where Self: Sized + Clone {
/// Return an index of element at the given coordinates
///
/// # Arguments
///
/// * `coords` - vector representing the coordinates of the element in array
///
/// # Examples
///
/// ```
/// use arr_rs::prelude::*;
///
/// let arr: Array<i32> = Array::new(vec![1,2,3,4,5,6,7,8], vec![2, 2, 2]).unwrap();
///
/// let idx_1 = arr.index_at(&[0, 0, 0]).unwrap();
/// assert_eq!(0, idx_1);
///
/// let idx_2 = arr.index_at(&[1, 0, 1]).unwrap();
/// assert_eq!(5, idx_2);
///
/// let idx_3 = arr.index_at(&[1, 1, 1]).unwrap();
/// assert_eq!(7, idx_3);
/// ```
fn index_at(&self, coords: &[usize]) -> Result<usize, ArrayError>;
/// Return coordinates at the given index of element
///
/// # Arguments
///
/// * `index` - index of element in flattened array
///
/// # Examples
///
/// ```
/// use arr_rs::prelude::*;
///
/// let arr: Array<i32> = Array::new(vec![1,2,3,4,5,6,7,8], vec![2, 2, 2]).unwrap();
///
/// let coord_1 = arr.index_to_coord(0).unwrap();
/// assert_eq!(vec![0, 0, 0], coord_1);
///
/// let coord_2 = arr.index_to_coord(5).unwrap();
/// assert_eq!(vec![1, 0, 1], coord_2);
///
/// let coord_3 = arr.index_to_coord(7).unwrap();
/// assert_eq!(vec![1, 1, 1], coord_3);
/// ```
fn index_to_coord(&self, idx: usize) -> Result<Vec<usize>, ArrayError>;
/// Return an index of element at the given coordinates
///
/// # Arguments
///
/// * `coords` - vector representing the coordinates of the element in array
///
/// # Examples
///
/// ```
/// use arr_rs::prelude::*;
///
/// let arr: Array<i32> = Array::new(vec![1,2,3,4,5,6,7,8], vec![2, 2, 2]).unwrap();
///
/// let at_1 = arr.at(&[0, 0, 0]).unwrap();
/// assert_eq!(1, at_1);
///
/// let at_2 = arr.at(&[1, 0, 1]).unwrap();
/// assert_eq!(6, at_2);
///
/// let at_3 = arr.at(&[1, 1, 1]).unwrap();
/// assert_eq!(8, at_3);
/// ```
fn at(&self, coords: &[usize]) -> Result<T, ArrayError>;
/// Return a subarray of provided range
///
/// # Arguments
///
/// * `range` - starting and ending indices of elements to include in the subarray
///
/// # Examples
///
/// ```
/// use arr_rs::prelude::*;
///
/// let arr = Array::<i32>::flat(vec![1, 2, 3, 4, 5, 6, 7, 8]).unwrap();
/// let expected = Array::<i32>::flat(vec![1, 2, 3, 4]).unwrap();
/// assert_eq!(expected, arr.slice(0..4).unwrap());
///
/// let arr = Array::<i32>::new(vec![1, 2, 3, 4, 5, 6, 7, 8], vec![2, 4]).unwrap();
/// let expected = Array::<i32>::flat(vec![1, 2, 3, 4]).unwrap();
/// assert_eq!(expected, arr.slice(0..1).unwrap());
/// ```
fn slice(&self, range: std::ops::Range<usize>) -> Result<Array<T>, ArrayError>;
/// Return a subarray consisting on values on given indices.
///
/// # Arguments
///
/// * `indices` - indices which should be included in resulting array
///
/// # Examples
///
/// ```
/// use arr_rs::prelude::*;
///
/// let arr = Array::<i32>::flat(vec![1, 2, 3, 4, 5, 6, 7, 8]).unwrap();
///
/// let expected = Array::<i32>::flat(vec![3, 5, 7]).unwrap();
/// let slice_1 = arr.indices_at(&[2, 4, 6]).unwrap();
/// assert_eq!(format!("{expected}"), format!("{slice_1}"));
///
/// let expected = Array::<i32>::flat(vec![4, 5, 3, 8, 6, 7, 1, 2]).unwrap();
/// let slice_1 = arr.indices_at(&[3, 4, 2, 7, 5, 6, 0, 1]).unwrap();
/// assert_eq!(format!("{expected}"), format!("{slice_1}"));
/// ```
fn indices_at(&self, indices: &[usize]) -> Result<Array<T>, ArrayError>;
}
impl <T: ArrayElement> ArrayIndexing<T> for Array<T> {
fn index_at(&self, coords: &[usize]) -> Result<usize, ArrayError> {
if self.shape.len() != coords.len() {
Err(ArrayError::ParameterError { param: "coords", message: "length must match array dimension", })
} else if coords.iter().enumerate().any(|(i, _)| coords[i] >= self.shape[i]) {
Err(ArrayError::ParameterError { param: "coords", message: "value must match array shape", })
} else {
let result = self.shape.iter().enumerate().rev().fold((0, 1), |(mut index, mut stride), (i, &dim)| {
index += coords[i] * stride;
stride *= dim;
(index, stride)
}).0;
Ok(result)
}
}
fn index_to_coord(&self, idx: usize) -> Result<Vec<usize>, ArrayError> {
if idx >= self.len()? {
Err(ArrayError::ParameterError { param: "idx", message: "index must be smaller than array length", })
} else {
let result = self.shape.iter().rev().fold((idx, Vec::new()), |(ri, mut coords), &dim| {
coords.push(ri % dim);
(ri / dim, coords)
}).1.into_iter().rev().collect();
Ok(result)
}
}
fn at(&self, coords: &[usize]) -> Result<T, ArrayError> {
match self.index_at(coords) {
Ok(idx) => Ok(self.elements[idx].clone()),
Err(e) => Err(e),
}
}
fn slice(&self, range: std::ops::Range<usize>) -> Result<Self, ArrayError> {
if !(range.start <= range.end && range.end <= self.elements.len()) {
return Err(ArrayError::OutOfBounds { value: "slice range" })
}
if self.shape.len() == 1 {
Self::flat(self.elements[range].into())
} else if range.len() >= self.shape[0] {
Ok(self.clone())
} else {
let new_shape =
if range.len() > 1 { vec![range.len()].into_iter().chain(self.shape[1..].iter().cloned()).collect() }
else { self.shape[1..].to_vec() };
let items: usize = new_shape.iter().product();
let stride = items / new_shape[0];
let start_index = new_shape[0] * range.start;
let mut new_elements = Vec::with_capacity(items);
(start_index..start_index + items).step_by(stride).for_each(|idx| {
new_elements.extend_from_slice(&self.elements[idx..idx + stride]);
});
Self::new(new_elements, new_shape)
}
}
fn indices_at(&self, indices: &[usize]) -> Result<Array<T>, ArrayError> {
if self.ndim()? == 1 {
for &i in indices {
if i >= self.len()? { return Err(ArrayError::OutOfBounds { value: "indices" }) }
}
indices.iter()
.map(|&i| self[i].clone())
.collect::<Vec<T>>()
.to_array()
} else {
let arrs = self.split_axis(0)?;
for &i in indices {
if i >= arrs.len() { return Err(ArrayError::OutOfBounds { value: "indices" }) }
}
let new_shape = self.get_shape()?.update_at(0, indices.len());
indices.iter()
.flat_map(|&i| arrs[i].clone())
.collect::<Vec<T>>()
.to_array()
.reshape(&new_shape)
}
}
}
impl <T: ArrayElement> ArrayIndexing<T> for Result<Array<T>, ArrayError> {
fn index_at(&self, coords: &[usize]) -> Result<usize, ArrayError> {
self.clone()?.index_at(coords)
}
fn index_to_coord(&self, idx: usize) -> Result<Vec<usize>, ArrayError> {
self.clone()?.index_to_coord(idx)
}
fn at(&self, coords: &[usize]) -> Result<T, ArrayError> {
self.clone()?.at(coords)
}
fn slice(&self, range: std::ops::Range<usize>) -> Result<Array<T>, ArrayError> {
self.clone()?.slice(range)
}
fn indices_at(&self, indices: &[usize]) -> Result<Array<T>, ArrayError> {
self.clone()?.indices_at(indices)
}
}