1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
use crate::{
    core::prelude::*,
    errors::prelude::*,
    numeric::prelude::*,
    validators::prelude::*,
};

/// ArrayTrait - Array Create functions
pub trait ArrayCreateFrom<N: Numeric> where Array<N>: Sized + Clone {

    // matrices

    /// Extract a diagonal or construct a diagonal array
    ///
    /// # Arguments
    ///
    /// * `k` - chosen diagonal. optional, defaults to 0
    ///
    /// # Examples
    ///
    /// ```
    /// use arr_rs::prelude::*;
    ///
    /// let expected: Array<i32> = array!([[1, 0, 0, 0], [0, 2, 0, 0], [0, 0, 3, 0], [0, 0, 0, 4]]).unwrap();
    /// let arr: Array<i32> = Array::diag(&array![1, 2, 3, 4].unwrap(), None).unwrap();
    /// assert_eq!(expected, arr);
    ///
    /// let expected: Array<i32> = array!([1, 2, 3, 4]).unwrap();
    /// let arr: Array<i32> = Array::diag(&array!([[1, 0, 0, 0], [0, 2, 0, 0], [0, 0, 3, 0], [0, 0, 0, 4]]).unwrap(), None).unwrap();
    /// assert_eq!(expected, arr);
    ///
    /// let expected: Array<i32> = array!([0, 0, 0]).unwrap();
    /// let arr: Array<i32> = Array::diag(&array!([[1, 0, 0, 0], [0, 2, 0, 0], [0, 0, 3, 0], [0, 0, 0, 4]]).unwrap(), Some(1)).unwrap();
    /// assert_eq!(expected, arr);
    /// ```
    fn diag(&self, k: Option<isize>) -> Result<Array<N>, ArrayError>;

    /// Construct a diagonal array for flattened input
    ///
    /// # Arguments
    ///
    /// * `data` - input array
    /// * `k` - chosen diagonal. optional, defaults to 0
    ///
    /// # Examples
    ///
    /// ```
    /// use arr_rs::prelude::*;
    ///
    /// let expected: Array<i32> = array!([[1, 0, 0, 0], [0, 2, 0, 0], [0, 0, 3, 0], [0, 0, 0, 4]]).unwrap();
    /// let arr: Array<i32> = Array::diagflat(&array![1, 2, 3, 4].unwrap(), None).unwrap();
    /// assert_eq!(expected, arr);
    ///
    /// let expected: Array<i32> = array!([[1, 0, 0, 0], [0, 2, 0, 0], [0, 0, 3, 0], [0, 0, 0, 4]]).unwrap();
    /// let arr: Array<i32> = Array::diagflat(&array!([[1, 2], [3, 4]]).unwrap(), None).unwrap();
    /// assert_eq!(expected, arr);
    /// ```
    fn diagflat(&self, k: Option<isize>) -> Result<Array<N>, ArrayError>;

    /// Return a copy of an array with elements above the k-th diagonal zeroed.
    /// For arrays with ndim exceeding 2, tril will apply to the final two axes.
    ///
    /// # Arguments
    ///
    /// * `k` - chosen diagonal. optional, defaults to 0
    ///
    /// # Examples
    ///
    /// ```
    /// use arr_rs::prelude::*;
    ///
    /// let arr: Array<i32> = array_arange!(1, 8).reshape(&[2, 4]).unwrap();
    /// let expected: Array<i32> = array!([[1, 0, 0, 0], [5, 6, 0, 0]]).unwrap();
    /// assert_eq!(expected, arr.tril(None).unwrap());
    ///
    /// let arr: Array<i32> = array_arange!(1, 8).reshape(&[2, 2, 2]).unwrap();
    /// let expected: Array<i32> = array!([[[1, 0], [3, 4]], [[5, 0], [7, 8]]]).unwrap();
    /// assert_eq!(expected, arr.tril(None).unwrap());
    /// ```
    fn tril(&self, k: Option<isize>) -> Result<Array<N>, ArrayError>;

    /// Return a copy of an array with elements below the k-th diagonal zeroed.
    /// For arrays with ndim exceeding 2, triu will apply to the final two axes.
    ///
    /// # Arguments
    ///
    /// * `k` - chosen diagonal. optional, defaults to 0
    ///
    /// # Examples
    ///
    /// ```
    /// use arr_rs::prelude::*;
    ///
    /// let arr: Array<i32> = array_arange!(1, 8).reshape(&[2, 4]).unwrap();
    /// let expected: Array<i32> = array!([[1, 2, 3, 4], [0, 6, 7, 8]]).unwrap();
    /// assert_eq!(expected, arr.triu(None).unwrap());
    ///
    /// let arr: Array<i32> = array_arange!(1, 8).reshape(&[2, 2, 2]).unwrap();
    /// let expected: Array<i32> = array!([[[1, 2], [0, 4]], [[5, 6], [0, 8]]]).unwrap();
    /// assert_eq!(expected, arr.triu(None).unwrap());
    /// ```
    fn triu(&self, k: Option<isize>) -> Result<Array<N>, ArrayError>;

    /// Generate a Vandermonde matrix
    ///
    /// # Arguments
    ///
    /// * `n` - number of columns in the output. optional, by default square array is returned
    /// * `increasing` - order of the powers of the columns. optional, defaults to false
    /// if true, the powers increase from left to right, if false, they are reversed.
    ///
    /// # Examples
    ///
    /// ```
    /// use arr_rs::prelude::*;
    ///
    /// let arr: Array<i32> = array!([1, 2, 3, 4]).unwrap();
    /// let expected: Array<i32> = array!([[1, 1, 1, 1], [8, 4, 2, 1], [27, 9, 3, 1], [64, 16, 4, 1]]).unwrap();
    /// assert_eq!(expected, arr.vander(None, Some(false)).unwrap());
    ///
    /// let arr: Array<i32> = array!([1, 2, 3, 4]).unwrap();
    /// let expected: Array<i32> = array!([[1, 1, 1, 1], [1, 2, 4, 8], [1, 3, 9, 27], [1, 4, 16, 64]]).unwrap();
    /// assert_eq!(expected, arr.vander(None, Some(true)).unwrap());
    /// ```
    fn vander(&self, n: Option<usize>, increasing: Option<bool>) -> Result<Array<N>, ArrayError>;
}

impl <N: Numeric> ArrayCreateFrom<N> for Array<N> {

    // ==== matrices

    fn diag(&self, k: Option<isize>) -> Result<Array<N>, ArrayError> {
        self.is_dim_supported(&[1, 2])?;

        fn diag_1d<N: Numeric>(data: &Array<N>, k: isize) -> Result<Array<N>, ArrayError> {
            let size = data.get_shape()?[0];
            let abs_k = k.unsigned_abs();
            let new_shape = vec![size + abs_k, size + abs_k];
            let data_elements = data.get_elements()?;
            let elements = (0..new_shape[0] * new_shape[1])
                .map(|idx| {
                    let (i, j) = (idx / new_shape[1], idx % new_shape[1]);
                    if k >= 0 && j == i + k as usize {
                        if i < size { data_elements[i] }
                        else { N::zero() }
                    } else if k < 0 && i == j + abs_k {
                        if j < size { data_elements[j] }
                        else { N::zero() }
                    } else {
                        N::zero()
                    }
                })
                .collect();

            Array::new(elements, new_shape)
        }

        fn diag_2d<N: Numeric>(data: &Array<N>, k: isize) -> Result<Array<N>, ArrayError> {
            let rows = data.get_shape()?[0];
            let cols = data.get_shape()?[1];
            let (start_row, start_col) =
                if k >= 0 { (0, k as usize) }
                else { ((-k) as usize, 0) };

            let data_elements = data.get_elements()?;
            let elements = (start_row..rows)
                .zip(start_col..cols)
                .map(|(i, j)| data_elements[i * cols + j])
                .collect::<Vec<N>>();

            Array::new(elements.clone(), vec![elements.len()])
        }

        let k = k.unwrap_or(0);
        if self.ndim()? == 1 { diag_1d(self, k) }
        else { diag_2d(self, k) }
    }

    fn diagflat(&self, k: Option<isize>) -> Result<Array<N>, ArrayError> {
        self.ravel()?.diag(k)
    }

    fn tril(&self, k: Option<isize>) -> Result<Array<N>, ArrayError> {
        let k = k.unwrap_or(0);
        self.apply_triangular(k, |j, i, k| j > i + k)
    }

    fn triu(&self, k: Option<isize>) -> Result<Array<N>, ArrayError> {
        let k = k.unwrap_or(0);
        self.apply_triangular(k, |j, i, k| j < i + k)
    }

    fn vander(&self, n: Option<usize>, increasing: Option<bool>) -> Result<Array<N>, ArrayError> {
        self.is_dim_supported(&[1])?;

        let size = self.shape[0];
        let increasing = increasing.unwrap_or(false);
        let n_columns = n.unwrap_or(size);
        let mut elements = Vec::with_capacity(size * n_columns);

        for item in self.into_iter() {
            for i in 0..n_columns {
                let power = if increasing { i } else { n_columns - i - 1 } as f64;
                elements.push(N::from(item.to_f64().powf(power)));
            }
        }

        Self::new(elements, vec![size, n_columns])
    }
}

impl <N: Numeric> Array<N> {

    fn apply_triangular<F>(&self, k: isize, compare: F) -> Result<Array<N>, ArrayError>
        where F: Fn(isize, isize, isize) -> bool {
        let last_dim = self.shape.len() - 1;
        let second_last_dim = self.shape.len() - 2;
        let chunk_size = self.shape[last_dim] * self.shape[second_last_dim];

        let elements = self.elements
            .chunks(chunk_size)
            .flat_map(|chunk| {
                chunk
                    .iter()
                    .enumerate()
                    .map(|(idx, &value)| {
                        let i = (idx / self.shape[last_dim]) % self.shape[second_last_dim];
                        let j = idx % self.shape[last_dim];
                        if compare(j as isize, i as isize, k) { N::zero() } else { value }
                    })
            })
            .collect();

        Self::new(elements, self.shape.clone())
    }
}