1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
use crate::{
core::prelude::*,
errors::prelude::*,
extensions::prelude::*,
validators::prelude::*,
};
/// ArrayTrait - Array Joining functions
pub trait ArrayJoining<T: ArrayElement> where Self: Sized + Clone {
/// Join a sequence of arrays along an existing axis
///
/// # Arguments
///
/// * `arrs` - arrays to concatenate
/// * `axis` - the axis along which to concat. optional, if None - arrays are flattened
///
/// # Examples
/// ```
/// use arr_rs::prelude::*;
///
/// let arr: Array<i32> = array!([1, 2, 3]).unwrap();
/// let other: Array<i32> = array!([4, 5, 6]).unwrap();
/// let expected: Array<i32> = array!([1, 2, 3, 4, 5, 6]).unwrap();
/// assert_eq!(expected, Array::<i32>::concatenate(vec![arr, other], None).unwrap());
///
/// let arr: Array<i32> = array!([[1, 2], [3, 4]]).unwrap();
/// let other: Array<i32> = array!([[5, 6]]).unwrap();
/// let expected: Array<i32> = array!([[1, 2], [3, 4], [5, 6]]).unwrap();
/// assert_eq!(expected, Array::<i32>::concatenate(vec![arr, other], Some(0)).unwrap());
/// ```
fn concatenate(arrs: Vec<Array<T>>, axis: Option<usize>) -> Result<Array<T>, ArrayError>;
/// Join a sequence of arrays along a new axis
///
/// # Arguments
///
/// * `arrs` - arrays to stack
/// * `axis` - the axis along which to concat. optional, defaults to 0
///
/// # Examples
/// ```
/// use arr_rs::prelude::*;
///
/// let arr: Array<i32> = array!([1, 2, 3]).unwrap();
/// let other: Array<i32> = array!([4, 5, 6]).unwrap();
/// let expected: Array<i32> = array!([[1, 2, 3], [4, 5, 6]]).unwrap();
/// assert_eq!(expected, Array::<i32>::stack(vec![arr, other], None).unwrap());
///
/// let arr: Array<i32> = array!([[1, 2], [3, 4]]).unwrap();
/// let other: Array<i32> = array!([[5, 6], [7, 8]]).unwrap();
/// let expected: Array<i32> = array!([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]).unwrap();
/// assert_eq!(expected, Array::<i32>::stack(vec![arr, other], Some(0)).unwrap());
/// ```
fn stack(arrs: Vec<Array<T>>, axis: Option<usize>) -> Result<Array<T>, ArrayError>;
/// Stack arrays in sequence vertically (row wise)
///
/// # Arguments
///
/// * `arrs` - arrays to stack
///
/// # Examples
/// ```
/// use arr_rs::prelude::*;
///
/// let arr: Array<i32> = array!([1, 2, 3]).unwrap();
/// let other: Array<i32> = array!([4, 5, 6]).unwrap();
/// let expected: Array<i32> = array!([[1, 2, 3], [4, 5, 6]]).unwrap();
/// assert_eq!(expected, Array::<i32>::vstack(vec![arr, other]).unwrap());
///
/// let arr: Array<i32> = array!([[1], [2], [3]]).unwrap();
/// let other: Array<i32> = array!([[4], [5], [6]]).unwrap();
/// let expected: Array<i32> = array!([[1], [2], [3], [4], [5], [6]]).unwrap();
/// assert_eq!(expected, Array::<i32>::vstack(vec![arr, other]).unwrap());
/// ```
fn vstack(arrs: Vec<Array<T>>) -> Result<Array<T>, ArrayError>;
/// Stack arrays in sequence horizontally (column wise)
///
/// # Arguments
///
/// * `arrs` - arrays to stack
///
/// # Examples
/// ```
/// use arr_rs::prelude::*;
///
/// let arr: Array<i32> = array!([1, 2, 3]).unwrap();
/// let other: Array<i32> = array!([4, 5, 6]).unwrap();
/// let expected: Array<i32> = array!([1, 2, 3, 4, 5, 6]).unwrap();
/// assert_eq!(expected, Array::<i32>::hstack(vec![arr, other]).unwrap());
///
/// let arr: Array<i32> = array!([[1], [2], [3]]).unwrap();
/// let other: Array<i32> = array!([[4], [5], [6]]).unwrap();
/// let expected: Array<i32> = array!([[1, 4], [2, 5], [3, 6]]).unwrap();
/// assert_eq!(expected, Array::<i32>::hstack(vec![arr, other]).unwrap());
/// ```
fn hstack(arrs: Vec<Array<T>>) -> Result<Array<T>, ArrayError>;
/// Stack arrays in sequence depth wise (along third axis)
///
/// # Arguments
///
/// * `arrs` - arrays to stack
///
/// # Examples
/// ```
/// use arr_rs::prelude::*;
///
/// let arr: Array<i32> = array!([1, 2, 3]).unwrap();
/// let other: Array<i32> = array!([4, 5, 6]).unwrap();
/// let expected: Array<i32> = array!([[[1, 4], [2, 5], [3, 6]]]).unwrap();
/// assert_eq!(expected, Array::<i32>::dstack(vec![arr, other]).unwrap());
///
/// let arr: Array<i32> = array!([[1], [2], [3]]).unwrap();
/// let other: Array<i32> = array!([[4], [5], [6]]).unwrap();
/// let expected: Array<i32> = array!([[[1, 4]], [[2, 5]], [[3, 6]]]).unwrap();
/// assert_eq!(expected, Array::<i32>::dstack(vec![arr, other]).unwrap());
/// ```
fn dstack(arrs: Vec<Array<T>>) -> Result<Array<T>, ArrayError>;
/// Stack 1d or 2d arrays as columns into a 2d array
/// row_stack is an alias for vstack
///
/// # Arguments
///
/// * `arrs` - arrays to stack
///
/// # Examples
/// ```
/// use arr_rs::prelude::*;
///
/// let arr: Array<i32> = array!([1, 2, 3]).unwrap();
/// let other: Array<i32> = array!([4, 5, 6]).unwrap();
/// let expected: Array<i32> = array!([[1, 4], [2, 5], [3, 6]]).unwrap();
/// assert_eq!(expected, Array::<i32>::column_stack(vec![arr, other]).unwrap());
/// ```
fn column_stack(arrs: Vec<Array<T>>) -> Result<Array<T>, ArrayError>;
/// Stack arrays in sequence vertically (row wise)
///
/// # Arguments
///
/// * `arrs` - arrays to stack
///
/// # Examples
/// ```
/// use arr_rs::prelude::*;
///
/// let arr: Array<i32> = array!([1, 2, 3]).unwrap();
/// let other: Array<i32> = array!([4, 5, 6]).unwrap();
/// let expected: Array<i32> = array!([[1, 2, 3], [4, 5, 6]]).unwrap();
/// assert_eq!(expected, Array::<i32>::row_stack(vec![arr, other]).unwrap());
///
/// let arr: Array<i32> = array!([[1], [2], [3]]).unwrap();
/// let other: Array<i32> = array!([[4], [5], [6]]).unwrap();
/// let expected: Array<i32> = array!([[1], [2], [3], [4], [5], [6]]).unwrap();
/// assert_eq!(expected, Array::<i32>::row_stack(vec![arr, other]).unwrap());
/// ```
fn row_stack(arrs: Vec<Array<T>>) -> Result<Array<T>, ArrayError>;
}
impl <T: ArrayElement> ArrayJoining<T> for Array<T> {
fn concatenate(arrs: Vec<Self>, axis: Option<usize>) -> Result<Self, ArrayError> {
if arrs.is_empty() { Self::empty() }
else {
if let Some(axis) = axis { arrs.validate_stack_shapes(axis, axis)?; }
let (mut arrs, initial) = (arrs.clone(), arrs[0].clone());
println!("{initial:?}");
let result = arrs.remove_at(0).into_iter()
.fold(initial, |a, b| {
println!();
println!("{a:?}");
println!("{b:?}");
println!("{axis:?}");
a.append(&b, axis).unwrap()
});
Ok(result)
}
}
fn stack(arrs: Vec<Self>, axis: Option<usize>) -> Result<Self, ArrayError> {
arrs.axis_opt_in_bounds(axis)?;
if arrs.is_empty() { Self::empty() }
else if (0..arrs.len() - 1).any(|i| arrs[i].get_shape() != arrs[i + 1].get_shape()) {
Err(ArrayError::ParameterError { param: "arrs", message: "all input arrays must have the same shape", })
} else {
let axis = axis.unwrap_or(0);
let new_shape = arrs[0].get_shape()?.insert_at(axis, arrs.len());
let (mut arrs, initial) = (arrs.clone(), arrs[0].clone());
arrs.remove_at(0).into_iter()
.fold(initial, |a, b| a.append(&b, Some(axis)).unwrap())
.reshape(&new_shape)
}
}
fn vstack(arrs: Vec<Self>) -> Result<Self, ArrayError> {
if arrs.is_empty() { Self::empty() }
else {
arrs.validate_stack_shapes(0, 0)?;
let mut new_shape = arrs[0].get_shape()?;
if new_shape.len() == 1 { new_shape.insert_at(0, arrs.len()); }
else { new_shape[0] = arrs.iter().fold(0, |a, b| a + b.shape[0]); }
match Self::concatenate(arrs, Some(0)) {
Ok(c) => c.reshape(&new_shape),
Err(e) => Err(e),
}
}
}
fn hstack(arrs: Vec<Self>) -> Result<Self, ArrayError> {
if arrs.is_empty() { return Self::empty() }
arrs.iter().map(|a| a.ndim()).collect::<Vec<Result<usize, ArrayError>>>().has_error()?;
if arrs.iter().all(|arr| arr.ndim().unwrap() == 1) {
Self::concatenate(arrs, Some(0))
} else {
let arrs = arrs.iter()
.map(|arr| arr.atleast(2)).collect::<Vec<Result<Self, _>>>()
.has_error()?.into_iter()
.map(|a| a.unwrap())
.collect::<Vec<Self<>>>();
arrs.validate_stack_shapes(1, 0)?;
let mut new_shape = arrs[0].get_shape()?;
new_shape[1] = arrs.iter().fold(0, |a, b| a + b.shape[1]);
match Self::concatenate(arrs, Some(1)) {
Ok(c) => c.reshape(&new_shape),
Err(e) => Err(e),
}
}
}
fn dstack(arrs: Vec<Self>) -> Result<Self, ArrayError> {
if arrs.is_empty() { Self::empty() }
else {
let arrs = arrs.iter()
.map(|arr| arr.atleast(3))
.collect::<Vec<Result<Self, _>>>()
.has_error()?.into_iter()
.map(|a| a.unwrap())
.collect::<Vec<Self<>>>();
arrs.validate_stack_shapes(2, 0)?;
let mut new_shape = arrs[0].get_shape()?;
new_shape[2] = arrs.iter().fold(0, |a, b| a + b.shape[2]);
match Self::concatenate(arrs, Some(2)) {
Ok(c) => c.reshape(&new_shape),
Err(e) => Err(e),
}
}
}
fn column_stack(arrs: Vec<Self>) -> Result<Self, ArrayError> {
if arrs.is_empty() { Self::empty() }
else {
let (num_rows, mut total_cols) = (arrs[0].shape[0], 0);
arrs.is_dim_supported(&[1, 2])?;
if arrs.iter().any(|array| array.shape[0] != num_rows) {
return Err(ArrayError::ParameterError { param: "arrs", message: "all input arrays must have the same first dimension", });
}
arrs.iter().map(|a| a.ndim()).collect::<Vec<Result<usize, ArrayError>>>().has_error()?;
arrs.iter().for_each(|array| {
if array.ndim().unwrap() == 1 { total_cols += 1; }
else { total_cols += array.shape[1]; }
});
let (mut new_elements, mut new_col_idx) = (vec![T::zero(); num_rows * total_cols], 0);
arrs.iter().for_each(|array| {
let array_cols = if array.ndim().unwrap() == 1 { 1 } else { array.shape[1] };
(0 .. num_rows).for_each(|row| {
(0..array_cols).for_each(|col| {
let src_idx = row * array_cols + col;
let dst_idx = row * total_cols + new_col_idx + col;
new_elements[dst_idx] = array.elements[src_idx].clone();
})
});
new_col_idx += array_cols;
});
Self::new(new_elements, vec![num_rows, total_cols])
}
}
fn row_stack(arrs: Vec<Self>) -> Result<Self, ArrayError> {
Self::vstack(arrs)
}
}