1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
use crate::{
core::prelude::*,
errors::prelude::*,
numeric::prelude::*,
validators::prelude::*,
};
/// ArrayTrait - Array Create functions
pub trait ArrayCreateFrom<N: Numeric> where Array<N>: Sized + Clone {
// matrices
/// Extract a diagonal or construct a diagonal array
///
/// # Arguments
///
/// * `k` - chosen diagonal. optional, defaults to 0
///
/// # Examples
///
/// ```
/// use arr_rs::prelude::*;
///
/// let expected: Array<i32> = array!([[1, 0, 0, 0], [0, 2, 0, 0], [0, 0, 3, 0], [0, 0, 0, 4]]).unwrap();
/// let arr: Array<i32> = Array::diag(&array![1, 2, 3, 4].unwrap(), None).unwrap();
/// assert_eq!(expected, arr);
///
/// let expected: Array<i32> = array!([1, 2, 3, 4]).unwrap();
/// let arr: Array<i32> = Array::diag(&array!([[1, 0, 0, 0], [0, 2, 0, 0], [0, 0, 3, 0], [0, 0, 0, 4]]).unwrap(), None).unwrap();
/// assert_eq!(expected, arr);
///
/// let expected: Array<i32> = array!([0, 0, 0]).unwrap();
/// let arr: Array<i32> = Array::diag(&array!([[1, 0, 0, 0], [0, 2, 0, 0], [0, 0, 3, 0], [0, 0, 0, 4]]).unwrap(), Some(1)).unwrap();
/// assert_eq!(expected, arr);
/// ```
fn diag(&self, k: Option<isize>) -> Result<Array<N>, ArrayError>;
/// Construct a diagonal array for flattened input
///
/// # Arguments
///
/// * `data` - input array
/// * `k` - chosen diagonal. optional, defaults to 0
///
/// # Examples
///
/// ```
/// use arr_rs::prelude::*;
///
/// let expected: Array<i32> = array!([[1, 0, 0, 0], [0, 2, 0, 0], [0, 0, 3, 0], [0, 0, 0, 4]]).unwrap();
/// let arr: Array<i32> = Array::diagflat(&array![1, 2, 3, 4].unwrap(), None).unwrap();
/// assert_eq!(expected, arr);
///
/// let expected: Array<i32> = array!([[1, 0, 0, 0], [0, 2, 0, 0], [0, 0, 3, 0], [0, 0, 0, 4]]).unwrap();
/// let arr: Array<i32> = Array::diagflat(&array!([[1, 2], [3, 4]]).unwrap(), None).unwrap();
/// assert_eq!(expected, arr);
/// ```
fn diagflat(&self, k: Option<isize>) -> Result<Array<N>, ArrayError>;
/// Return a copy of an array with elements above the k-th diagonal zeroed.
/// For arrays with ndim exceeding 2, tril will apply to the final two axes.
///
/// # Arguments
///
/// * `k` - chosen diagonal. optional, defaults to 0
///
/// # Examples
///
/// ```
/// use arr_rs::prelude::*;
///
/// let arr: Array<i32> = array_arange!(1, 8).reshape(&[2, 4]).unwrap();
/// let expected: Array<i32> = array!([[1, 0, 0, 0], [5, 6, 0, 0]]).unwrap();
/// assert_eq!(expected, arr.tril(None).unwrap());
///
/// let arr: Array<i32> = array_arange!(1, 8).reshape(&[2, 2, 2]).unwrap();
/// let expected: Array<i32> = array!([[[1, 0], [3, 4]], [[5, 0], [7, 8]]]).unwrap();
/// assert_eq!(expected, arr.tril(None).unwrap());
/// ```
fn tril(&self, k: Option<isize>) -> Result<Array<N>, ArrayError>;
/// Return a copy of an array with elements below the k-th diagonal zeroed.
/// For arrays with ndim exceeding 2, triu will apply to the final two axes.
///
/// # Arguments
///
/// * `k` - chosen diagonal. optional, defaults to 0
///
/// # Examples
///
/// ```
/// use arr_rs::prelude::*;
///
/// let arr: Array<i32> = array_arange!(1, 8).reshape(&[2, 4]).unwrap();
/// let expected: Array<i32> = array!([[1, 2, 3, 4], [0, 6, 7, 8]]).unwrap();
/// assert_eq!(expected, arr.triu(None).unwrap());
///
/// let arr: Array<i32> = array_arange!(1, 8).reshape(&[2, 2, 2]).unwrap();
/// let expected: Array<i32> = array!([[[1, 2], [0, 4]], [[5, 6], [0, 8]]]).unwrap();
/// assert_eq!(expected, arr.triu(None).unwrap());
/// ```
fn triu(&self, k: Option<isize>) -> Result<Array<N>, ArrayError>;
/// Generate a Vandermonde matrix
///
/// # Arguments
///
/// * `n` - number of columns in the output. optional, by default square array is returned
/// * `increasing` - order of the powers of the columns. optional, defaults to false
/// if true, the powers increase from left to right, if false, they are reversed.
///
/// # Examples
///
/// ```
/// use arr_rs::prelude::*;
///
/// let arr: Array<i32> = array!([1, 2, 3, 4]).unwrap();
/// let expected: Array<i32> = array!([[1, 1, 1, 1], [8, 4, 2, 1], [27, 9, 3, 1], [64, 16, 4, 1]]).unwrap();
/// assert_eq!(expected, arr.vander(None, Some(false)).unwrap());
///
/// let arr: Array<i32> = array!([1, 2, 3, 4]).unwrap();
/// let expected: Array<i32> = array!([[1, 1, 1, 1], [1, 2, 4, 8], [1, 3, 9, 27], [1, 4, 16, 64]]).unwrap();
/// assert_eq!(expected, arr.vander(None, Some(true)).unwrap());
/// ```
fn vander(&self, n: Option<usize>, increasing: Option<bool>) -> Result<Array<N>, ArrayError>;
}
impl <N: Numeric> ArrayCreateFrom<N> for Array<N> {
// ==== matrices
fn diag(&self, k: Option<isize>) -> Result<Array<N>, ArrayError> {
self.is_dim_supported(&[1, 2])?;
fn diag_1d<N: Numeric>(data: &Array<N>, k: isize) -> Result<Array<N>, ArrayError> {
let size = data.get_shape()?[0];
let abs_k = k.unsigned_abs();
let new_shape = vec![size + abs_k, size + abs_k];
let data_elements = data.get_elements()?;
let elements = (0..new_shape[0] * new_shape[1])
.map(|idx| {
let (i, j) = (idx / new_shape[1], idx % new_shape[1]);
if k >= 0 && j == i + k as usize {
if i < size { data_elements[i] }
else { N::zero() }
} else if k < 0 && i == j + abs_k {
if j < size { data_elements[j] }
else { N::zero() }
} else {
N::zero()
}
})
.collect();
Array::new(elements, new_shape)
}
fn diag_2d<N: Numeric>(data: &Array<N>, k: isize) -> Result<Array<N>, ArrayError> {
let rows = data.get_shape()?[0];
let cols = data.get_shape()?[1];
let (start_row, start_col) =
if k >= 0 { (0, k as usize) }
else { ((-k) as usize, 0) };
let data_elements = data.get_elements()?;
let elements = (start_row..rows)
.zip(start_col..cols)
.map(|(i, j)| data_elements[i * cols + j])
.collect::<Vec<N>>();
Array::new(elements.clone(), vec![elements.len()])
}
let k = k.unwrap_or(0);
if self.ndim()? == 1 { diag_1d(self, k) }
else { diag_2d(self, k) }
}
fn diagflat(&self, k: Option<isize>) -> Result<Array<N>, ArrayError> {
self.ravel()?.diag(k)
}
fn tril(&self, k: Option<isize>) -> Result<Array<N>, ArrayError> {
let k = k.unwrap_or(0);
self.apply_triangular(k, |j, i, k| j > i + k)
}
fn triu(&self, k: Option<isize>) -> Result<Array<N>, ArrayError> {
let k = k.unwrap_or(0);
self.apply_triangular(k, |j, i, k| j < i + k)
}
fn vander(&self, n: Option<usize>, increasing: Option<bool>) -> Result<Array<N>, ArrayError> {
self.is_dim_supported(&[1])?;
let size = self.shape[0];
let increasing = increasing.unwrap_or(false);
let n_columns = n.unwrap_or(size);
let mut elements = Vec::with_capacity(size * n_columns);
for item in self.into_iter() {
for i in 0..n_columns {
let power = if increasing { i } else { n_columns - i - 1 } as f64;
elements.push(N::from(item.to_f64().powf(power)));
}
}
Self::new(elements, vec![size, n_columns])
}
}
impl <N: Numeric> Array<N> {
fn apply_triangular<F>(&self, k: isize, compare: F) -> Result<Array<N>, ArrayError>
where F: Fn(isize, isize, isize) -> bool {
let last_dim = self.shape.len() - 1;
let second_last_dim = self.shape.len() - 2;
let chunk_size = self.shape[last_dim] * self.shape[second_last_dim];
let elements = self.elements
.chunks(chunk_size)
.flat_map(|chunk| {
chunk
.iter()
.enumerate()
.map(|(idx, &value)| {
let i = (idx / self.shape[last_dim]) % self.shape[second_last_dim];
let j = idx % self.shape[last_dim];
if compare(j as isize, i as isize, k) { N::zero() } else { value }
})
})
.collect();
Self::new(elements, self.shape.clone())
}
}