1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
use crate::{
    core::prelude::*,
    errors::prelude::*,
    numeric::prelude::*,
};

/// ArrayTrait - Array Math functions
pub trait ArrayMathMisc<N: Numeric> where Self: Sized + Clone {

    /// Computes sqrt of array elements
    ///
    /// # Examples
    ///
    /// ```
    /// use arr_rs::prelude::*;
    ///
    /// let arr = Array::flat(vec![1, 4, 9, 16]).unwrap();
    /// assert_eq!(Array::flat(vec![1, 2, 3, 4]).unwrap(), arr.sqrt().unwrap());
    /// ```
    fn sqrt(&self) -> Result<Array<N>, ArrayError>;

    /// Computes natural logarithm of array elements
    ///
    /// # Examples
    ///
    /// ```
    /// use arr_rs::prelude::*;
    ///
    /// let arr = Array::flat(vec![1., 4., 8., 16.]).unwrap();
    /// assert_eq!(Array::flat(vec![0., 1.3862943611198906, 2.0794415416798357, 2.772588722239781]).unwrap(), arr.log().unwrap());
    /// ```
    fn log(&self) -> Result<Array<N>, ArrayError>;

    /// Computes logarithm base 2 of array elements
    ///
    /// # Examples
    ///
    /// ```
    /// use arr_rs::prelude::*;
    ///
    /// let arr = Array::flat(vec![1., 4., 8., 16.]).unwrap();
    /// assert_eq!(Array::flat(vec![0., 2., 3., 4.]).unwrap(), arr.log2().unwrap());
    /// ```
    fn log2(&self) -> Result<Array<N>, ArrayError>;

    /// Computes logarithm base 10 of array elements
    ///
    /// # Examples
    ///
    /// ```
    /// use arr_rs::prelude::*;
    ///
    /// let arr = Array::flat(vec![1., 10., 100.]).unwrap();
    /// assert_eq!(Array::flat(vec![0., 1., 2.]).unwrap(), arr.log10().unwrap());
    /// ```
    fn log10(&self) -> Result<Array<N>, ArrayError>;

    /// Computes logarithm base n of array elements
    ///
    /// # Arguments
    ///
    /// * `value` - log array to perform the operation with
    ///
    /// # Examples
    ///
    /// ```
    /// use arr_rs::prelude::*;
    ///
    /// let arr = Array::flat(vec![2., 4., 8., 20.]).unwrap();
    /// assert_eq!(Array::flat(vec![1., 2., 3., 1.301029995663981]).unwrap(), arr.logn(&Array::flat(vec![2., 2., 2., 10.]).unwrap()).unwrap());
    /// ```
    fn logn(&self, value: &Array<N>) -> Result<Array<N>, ArrayError>;

    /// Computes power of array elements
    ///
    /// # Examples
    ///
    /// ```
    /// use arr_rs::prelude::*;
    ///
    /// let arr = Array::flat(vec![1,2,3,4]).unwrap();
    /// assert_eq!(Array::flat(vec![1, 4, 9, 16]).unwrap(), arr.power(&Array::single(2).unwrap()).unwrap());
    /// ```
    fn power(&self, value: &Array<N>) -> Result<Array<N>, ArrayError>;

    /// Computes absolute value of array elements
    ///
    /// # Examples
    ///
    /// ```
    /// use arr_rs::prelude::*;
    ///
    /// let arr = Array::flat(vec![1, -2, 3, -4]);
    /// assert_eq!(Array::flat(vec![1, 2, 3, 4]), arr.abs());
    /// ```
    fn abs(&self) -> Result<Array<N>, ArrayError>;
}

impl <N: Numeric> ArrayMathMisc<N> for Array<N> {

    fn sqrt(&self) -> Result<Array<N>, ArrayError> {
        self.map(|i| N::from(i.to_f64().sqrt()))
    }

    fn log(&self) -> Result<Array<N>, ArrayError> {
        self.logn(&Array::single(N::from(std::f64::consts::E)).unwrap())
    }

    fn log2(&self) -> Result<Array<N>, ArrayError> {
        self.logn(&Array::single(N::from(2)).unwrap())
    }

    fn log10(&self) -> Result<Array<N>, ArrayError> {
        self.logn(&Array::single(N::from(10)).unwrap())
    }

    fn logn(&self, value: &Array<N>) -> Result<Array<N>, ArrayError> {
        let broadcasted = self.broadcast(value)?;
        let elements = broadcasted.clone().into_iter()
            .map(|tuple| N::from(tuple.0.to_f64().log(tuple.1.to_f64())))
            .collect();
        Array::new(elements, broadcasted.get_shape()?)
    }

    fn power(&self, value: &Array<N>) -> Result<Array<N>, ArrayError> {
        let broadcasted = self.broadcast(value)?;
        let elements = broadcasted.clone().into_iter()
            .map(|tuple| N::from(tuple.0.to_f64().powf(tuple.1.to_f64())))
            .collect();
        Array::new(elements, broadcasted.get_shape()?)
    }

    fn abs(&self) -> Result<Array<N>, ArrayError> {
        self.map(|i| N::from(i.to_f64().abs()))
    }
}

impl <N: Numeric> ArrayMathMisc<N> for Result<Array<N>, ArrayError> {

    fn sqrt(&self) -> Result<Array<N>, ArrayError> {
        self.clone()?.sqrt()
    }

    fn log(&self) -> Result<Array<N>, ArrayError> {
        self.clone()?.log()
    }

    fn log2(&self) -> Result<Array<N>, ArrayError> {
        self.clone()?.log2()
    }

    fn log10(&self) -> Result<Array<N>, ArrayError> {
        self.clone()?.log10()
    }

    fn logn(&self, value: &Array<N>) -> Result<Array<N>, ArrayError> {
        self.clone()?.logn(value)
    }

    fn power(&self, value: &Array<N>) -> Result<Array<N>, ArrayError> {
        self.clone()?.power(value)
    }

    fn abs(&self) -> Result<Array<N>, ArrayError> {
        self.clone()?.abs()
    }
}