1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
use std::collections::HashMap;
use crate::arrays::Array;
use crate::ext::vec_ext::{VecRemoveAt, VecRevert};
use crate::prelude::ArrayAxis;
use crate::traits::{
    create::ArrayCreate,
    errors::ArrayError,
    manipulate::{
        ArrayManipulate,
        broadcast::ArrayBroadcast,
        reorder::ArrayReorder,
        split::ArraySplit,
    },
    meta::ArrayMeta,
    types::numeric::Numeric,
    validators::{
        validate_dimension::ValidateDimension,
        validate_has_error::ValidateHasError,
    },
};

impl <N: Numeric> ArrayReorder<N> for Array<N> {

    fn flip(&self, axes: Option<Vec<isize>>) -> Result<Array<N>, ArrayError> {
        match axes {
            None => {
                let mut flipped_elements = self.get_elements()?;
                flipped_elements.reverse();
                Array::new(flipped_elements, self.get_shape()?)
            },
            Some(axes) => {
                let self_ndim = self.ndim()?;
                let self_shape = self.shape.clone();
                let axes = axes.into_iter().map(|i| Self::normalize_axis(i, self_ndim)).collect::<Vec<usize>>();

                let mut elements = self.elements.clone();
                for ax in axes {
                    let flatten = Array::flat(elements);
                    elements =
                        if ax == 0 { flatten
                            .split(self_shape[0], Some(0))?.reverse_ext().into_iter()
                            .flatten().collect::<Vec<N>>()
                        } else if ax == self_ndim - 1 { flatten
                            .split(self_shape[0 .. ax].iter().product(), None)?.iter_mut()
                            .flat_map(|arr| arr.elements.reverse_ext())
                            .collect::<Vec<N>>()
                        } else { flatten
                            .split(self_shape[ax], None)?.into_iter()
                            .map(|i| i.reshape(self.shape.clone().remove_at(ax)))
                            .map(|i| i.flip(Some(vec![ax as isize - 1])))
                            .collect::<Vec<Result<Array<N>, _>>>()
                            .has_error()?.into_iter()
                            .flat_map(|i| i.unwrap())
                            .collect::<Vec<N>>()
                        }
                    };

                Array::flat(elements).reshape(self_shape)
            }
        }
    }

    fn flipud(&self) -> Result<Array<N>, ArrayError> {
        self.is_dim_unsupported(&[0])?;
        self.clone().flip(Some(vec![0]))
    }

    fn fliplr(&self) -> Result<Array<N>, ArrayError> {
        self.is_dim_unsupported(&[0, 1])?;
        self.clone().flip(Some(vec![1]))
    }

    fn roll(&self, shift: Vec<isize>, axes: Option<Vec<isize>>) -> Result<Array<N>, ArrayError> {
        let array = if axes.is_none() { self.ravel()? } else { self.clone() };
        let axes = axes.unwrap_or(vec![0]);

        let self_ndim = array.ndim()?;
        let broadcasted = Array::flat(shift).broadcast(&Array::flat(axes)?)?;
        if broadcasted.ndim()? > 1 { return Err(ArrayError::ParameterError { param: "'shift' and 'axis'", message: "should be 1D" }); }
        let broadcasted = broadcasted.into_iter().map(|a| (
            Self::normalize_axis(a.1, self_ndim),
            a.0,
        )).collect::<Vec<(usize, isize)>>();

        let mut shifts: HashMap<usize, isize> = HashMap::new();
        broadcasted.iter().for_each(|(a, b)| {
            *shifts.entry(*a).or_insert(0) += *b;
        });

        let mut elements = array.get_elements()?;
        match self_ndim {
            0 => Array::empty(),
            1 => {
                shifts.iter().for_each(|(_, &sh)| {
                    if sh >= 0 { elements.rotate_right(sh as usize); }
                    else { elements.rotate_left(sh.unsigned_abs()); }
                });
                Array::flat(elements).reshape(self.shape.clone())
            },
            _ => {
                for (ax, sh) in shifts.clone() {
                    let flatten = Array::flat(elements.clone());
                    elements = if ax == 0 {
                        let mut split = flatten.split(self.shape[0], Some(0))?;
                        if sh >= 0 { split.rotate_right(sh as usize); }
                        else { split.rotate_left(sh.unsigned_abs()); }
                        split.into_iter().flatten().collect()
                    } else if ax == self_ndim - 1 { flatten
                        .split(self.shape[0 .. ax].iter().product(), None)?.iter()
                        .flat_map(|item| {
                            let mut tmp_item = item.elements.clone();
                            if sh >= 0 { tmp_item.rotate_right(sh as usize); }
                            else { tmp_item.rotate_left(sh.unsigned_abs()); }
                            tmp_item
                        }).collect()
                    } else { flatten
                        .split(self.shape[ax], None)?.into_iter()
                        .map(|i| i.reshape(self.shape.clone().remove_at(ax)))
                        .map(|i| i.roll(vec![shifts[&ax]], Some(vec![ax as isize - 1])))
                        .collect::<Vec<Result<Array<N>, _>>>()
                        .has_error()?.into_iter()
                        .flat_map(|i| i.unwrap())
                        .collect::<Vec<N>>()
                    }
                }
                Array::new(elements, self.shape.clone())
            }
        }
    }

    fn rot90(&self, k: usize, axes: Vec<isize>) -> Result<Array<N>, ArrayError> {
        self.is_dim_unsupported(&[0, 1])?;
        if axes.len() != 2 {
            return Err(ArrayError::ParameterError { param: "axes", message: "axes length must be 2" })
        }
        let self_ndim = self.ndim()? as isize;
        if axes[0] >= self_ndim || axes[0] < -self_ndim || axes[1] >= self_ndim || axes[1] < -self_ndim {
            return Err(ArrayError::ParameterError { param: "axes", message: "out of range" })
        }

        let k = k % 4;
        if k == 0 { return Ok(self.clone()) }
        if k == 2 { return self.flip(Some(vec![axes[1]])).flip(Some(vec![axes[0]])) }

        let axes = axes.into_iter().map(|i| Self::normalize_axis(i, self_ndim as usize)).collect::<Vec<usize>>();
        let mut axes_list = Array::arange(0, self_ndim - 1, None)?.get_elements()?;
        (axes_list[axes[0]], axes_list[axes[1]]) = (axes_list[axes[1]], axes_list[axes[0]]);

        if k == 1 { self.flip(Some(vec![axes[1] as isize])).transpose(Some(axes_list)) }
        else { self.transpose(Some(axes_list)).flip(Some(vec![axes[1] as isize])) }
    }
}

#[cfg(test)] mod test {
    use crate::prelude::*;

    #[test] fn test() {
        let arr: Result<Array<i32>, _> = array!([[1, 2], [3, 4]]);
        let res = arr.rot90(1, vec![0, 1, 2]);
        println!("{res:?}");
    }
}

impl <N: Numeric> ArrayReorder<N> for Result<Array<N>, ArrayError> {

    fn flip(&self, axes: Option<Vec<isize>>) -> Result<Array<N>, ArrayError> {
        self.clone()?.flip(axes)
    }

    fn flipud(&self) -> Result<Array<N>, ArrayError> {
        self.clone()?.flipud()
    }

    fn fliplr(&self) -> Result<Array<N>, ArrayError> {
        self.clone()?.fliplr()
    }

    fn roll(&self, shift: Vec<isize>, axes: Option<Vec<isize>>) -> Result<Array<N>, ArrayError> {
        self.clone()?.roll(shift, axes)
    }

    fn rot90(&self, k: usize, axes: Vec<isize>) -> Result<Array<N>, ArrayError> {
        self.clone()?.rot90(k, axes)
    }
}