1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
/// axis array functions implementation
pub mod axis;
/// broadcast array functions implementation
pub mod broadcast;
/// iterable array functions implementation
pub mod iter;
/// reorder array functions implementation
pub mod reorder;
/// split array functions implementation
pub mod split;
/// stack array functions implementation
pub mod stack;

use std::cmp::Ordering;
use itertools::Itertools;
use crate::arrays::Array;
use crate::ext::vec_ext::{VecInsertAt, VecRemoveAt};
use crate::traits::{
    create::ArrayCreate,
    errors::ArrayError,
    indexing::ArrayIndexing,
    manipulate::{
        ArrayManipulate,
        axis::ArrayAxis,
        broadcast::ArrayBroadcast,
        split::ArraySplit,
    },
    meta::ArrayMeta,
    types::numeric::Numeric,
    validators::{
        validate_axis::ValidateAxis,
        validate_dimension::ValidateDimension,
        validate_compare::ValidateEqual,
        validate_shape::ValidateShape,
    },
};

impl <N: Numeric> ArrayManipulate<N> for Array<N> {

    fn insert(&self, indices: Vec<usize>, values: &Self, axis: Option<usize>) -> Result<Array<N>, ArrayError> {
        if indices.len() > 1 { values.is_broadcastable(&[indices.len()])?; }
        if axis.is_some() {
            self.axis_in_bounds(axis.unwrap())?;
            values.is_broadcastable(&self.get_shape()?)?;
        }

        let values = if axis.unwrap_or(0) > 0 { values.ravel()? } else { values.clone() };
        let (subarrays, chunk_size, subarray_len) =
            if let Some(axis) = axis {
                let subarrays = if axis == 0 { 1 } else { self.get_shape()?[..axis].iter().product::<usize>() };
                let chunk_size = self.get_shape()?[axis + 1..].iter().product::<usize>();
                (subarrays, chunk_size, self.len()? / subarrays)
            } else { (1, 1, self.len()?) };

        let mut new_shape = self.shape.clone();
        match axis {
            Some(axis) => {
                if self.ndim() > values.ndim() { new_shape[axis] += indices.len(); }
                else { new_shape[axis] += values.shape[axis % values.ndim()?]; }
            },
            None => new_shape = vec![self.len()? + std::cmp::max(values.len()?, indices.len())],
        }

        let axis_some_cond = axis.is_some() && !(indices.len() == 1 || values.len()? == 1 || values.len()? == chunk_size * subarrays);
        let axis_none_cond = axis.is_none() && !(indices.len() == 1 || values.len()? == 1 || indices.len() == values.len()?);
        if axis_none_cond || axis_some_cond { return Err(ArrayError::ParameterError { param: "values|indices", message: "don't match for insert", }) }

        let indices =
            if let Some(axis) = axis {
                let mut chunk = self.get_shape()?;
                chunk.remove(axis);
                let repeat_count =
                    if values.ndim()? > 1 && axis != 0 { values.get_shape()?[0] }
                    else if values.len()? == 1 { 1 }
                    else { values.len()? / chunk.iter().product::<usize>() };
                (0 .. subarrays).flat_map(|i| indices.iter()
                    .flat_map(|&x| std::iter::repeat(x).take(chunk_size * repeat_count))
                    .map(move |j| j * chunk_size + subarray_len * i)
                ).collect::<Vec<usize>>()
            }
            else if indices.len() == 1 { vec![indices[0]; values.len()?] }
            else { indices };

        let values =
            if axis.is_some() { Ok(values.clone().into_iter().cycle().take(values.len()? * indices.len()).collect()) }
            else if values.len()? == 1 { values.broadcast_to(vec![indices.len()]) }
            else { Ok(values) }?;

        let mut new_elements = self.elements.clone();
        indices.iter().sorted().rev()
            .zip(&values.get_elements()?.iter().copied().rev().collect::<Vec<N>>())
            .for_each(|(&i, &e)| new_elements.insert(i, e));

        Self::new(new_elements, new_shape)
    }

    fn delete(&self, indices: Vec<usize>, axis: Option<usize>) -> Result<Array<N>, ArrayError> {
        if let Some(axis) = axis {
            self.axis_in_bounds(axis)?;
            let mut sorted_indices = indices;
            sorted_indices.sort();
            sorted_indices.dedup();

            let new_shape = self.shape.iter()
                .enumerate()
                .map(|(i, &dim)| if i == axis { dim.saturating_sub(sorted_indices.len()) } else { dim })
                .collect::<Vec<usize>>();

            if self.elements.iter()
                .enumerate()
                .any(|(idx, _)| self.index_to_coord(idx).is_err()) {
                return Err(ArrayError::ParameterError { param: "idx", message: "index must be smaller than array length", });
            }

            let new_elements = self.elements.iter()
                .enumerate()
                .filter_map(|(idx, elem)| {
                    let current_coords = self.index_to_coord(idx).unwrap();
                    if !sorted_indices.iter().any(|&i| i == current_coords[axis]) { Some(*elem) }
                    else { None }
                }).collect::<Vec<N>>();

            Self::new(new_elements, new_shape)
        } else {
            let mut new_elements = self.get_elements()?;
            if indices.iter().any(|&i| i >= new_elements.len()) { return Err(ArrayError::OutOfBounds { value: "index", }) }
            indices.iter().rev().for_each(|&i| { new_elements.remove(i); });

            Self::flat(new_elements)
        }
    }

    fn append(&self, values: &Self, axis: Option<usize>) -> Result<Array<N>, ArrayError> {
        if let Some(axis) = axis {
            self.axis_in_bounds(axis)?;
            if self.ndim().is_equal(&values.ndim()).is_err() {
                return Err(ArrayError::ParameterError { param: "values", message: "input array should have the same dimension as the original one", })
            } else if self.get_shape()?.remove_at(axis).is_equal(&values.get_shape()?.remove_at(axis)).is_err() {
                return Err(ArrayError::ParameterError { param: "axis", message: "input array dimensions for the concatenation axis must match exactly", })
            }

            let subarrays = if axis == 0 { 1 } else { self.get_shape()?[..axis].iter().product::<usize>() };
            let subarray_len = self.get_shape()?.iter().product::<usize>() / subarrays;
            let values_len = values.len()?;
            let indices = (0 .. subarrays).flat_map(|i| vec![subarray_len].iter().cycle()
                .take(values_len / subarrays)
                .map(|e| e + i * subarray_len)
                .collect::<Vec<usize>>()
            ).collect::<Vec<usize>>();

            let mut new_shape = self.get_shape()?;
            new_shape[axis] += values.get_shape()?[axis];
            let mut new_elements = self.get_elements()?;

            indices.iter().rev()
                .zip(&values.get_elements()?.iter().rev().collect::<Vec<&N>>())
                .for_each(|(&i, &&e)| new_elements.insert(i, e));
            Self::new(new_elements, new_shape)
        } else {
            let mut elements = self.get_elements()?;
            elements.append(&mut values.get_elements()?);
            Self::flat(elements)
        }
    }

    fn reshape(&self, shape: Vec<usize>) -> Result<Array<N>, ArrayError> {
        shape.matches_values_len(&self.get_elements()?)?;
        Self::new(self.elements.clone(), shape)
    }

    fn resize(&self, shape: Vec<usize>) -> Result<Array<N>, ArrayError> {
        self.get_elements()?.into_iter().cycle()
            .take(shape.iter().product::<usize>())
            .collect::<Self>()
            .reshape(shape)
    }

    fn unique(&self, axis: Option<usize>) -> Result<Array<N>, ArrayError> {
        if let Some(axis) = axis {
            let split = self.split(self.shape[axis], Some(axis))?;
            let mut parts = split.into_iter()
                .sorted_by(|a, b| a.partial_cmp(b).unwrap_or(Ordering::Equal))
                .collect::<Vec<Self>>();
            parts.dedup();
            let flat_parts = parts.clone().into_iter().flatten().collect::<Vec<N>>();
            if flat_parts.len() == self.len()? { Ok(self.clone()) }
            else {
                let new_shape = self.get_shape()?
                    .remove_at(axis)
                    .insert_at(axis, parts.len());
                let result = Array::new(flat_parts, new_shape)?;
                if !(axis > 0 && axis < self.ndim()? - 1) { Ok(result) }
                else { result.rollaxis(axis as isize, None) }
            }
        } else {
            let mut new_elements = self.get_elements()?.into_iter()
                .sorted_by(|&a, b| a.partial_cmp(b).unwrap_or(Ordering::Equal))
                .collect::<Vec<N>>();
            new_elements.dedup();
            Array::flat(new_elements)
        }
    }

    fn ravel(&self) -> Result<Array<N>, ArrayError> {
        Self::flat(self.elements.clone())
    }

    fn atleast(&self, n: usize) -> Result<Array<N>, ArrayError> {
        match n {
            0 => Ok(self.clone()),
            1 => Self::atleast_1d(self),
            2 => Self::atleast_2d(self),
            3 => Self::atleast_3d(self),
            _ => Err(ArrayError::UnsupportedDimension { supported: vec![0, 1, 2, 3] }),
        }
    }

    fn trim_zeros(&self) -> Result<Array<N>, ArrayError> {
        self.is_dim_supported(&[1])?;

        let new_elements = self.get_elements()?
            .into_iter().rev()
            .skip_while(|&e| e == N::ZERO)
            .collect::<Vec<_>>()
            .into_iter().rev()
            .skip_while(|&e| e == N::ZERO)
            .collect::<Vec<_>>();

        Self::flat(new_elements)
    }
}

impl <N: Numeric> ArrayManipulate<N> for Result<Array<N>, ArrayError> {
    
    fn insert(&self, indices: Vec<usize>, values: &Array<N>, axis: Option<usize>) -> Result<Array<N>, ArrayError> {
        self.clone()?.insert(indices, values, axis)
    }

    fn delete(&self, indices: Vec<usize>, axis: Option<usize>) -> Result<Array<N>, ArrayError> {
        self.clone()?.delete(indices, axis)
    }

    fn append(&self, values: &Array<N>, axis: Option<usize>) -> Result<Array<N>, ArrayError> {
        self.clone()?.append(values, axis)
    }

    fn reshape(&self, shape: Vec<usize>) -> Result<Array<N>, ArrayError> {
        self.clone()?.reshape(shape)
    }

    fn resize(&self, shape: Vec<usize>) -> Result<Array<N>, ArrayError> {
        self.clone()?.resize(shape)
    }

    fn unique(&self, axis: Option<usize>) -> Result<Array<N>, ArrayError> {
        self.clone()?.unique(axis)
    }

    fn ravel(&self) -> Result<Array<N>, ArrayError> {
        self.clone()?.ravel()
    }

    fn atleast(&self, n: usize) -> Result<Array<N>, ArrayError> {
        self.clone()?.atleast(n)
    }

    fn trim_zeros(&self) -> Result<Array<N>, ArrayError> {
        self.clone()?.trim_zeros()
    }
}

impl <N: Numeric> Array<N> {

    fn atleast_1d(&self) -> Result<Array<N>, ArrayError> {
        if !self.ndim()? >= 1 { Ok(self.clone()) }
        else { self.reshape(vec![1]) }
    }

    fn atleast_2d(&self) -> Result<Array<N>, ArrayError> {
        if self.ndim()? >= 2 { Ok(self.clone()) }
        else {
            match self.ndim()? {
                0 => self.reshape(vec![1, 1]),
                1 => self.reshape(vec![1, self.get_shape()?[0]]),
                _ => self.reshape(vec![self.get_shape()?[0], 1]),
            }
        }
    }

    fn atleast_3d(&self) -> Result<Array<N>, ArrayError> {
        if self.ndim()? >= 3 { Ok(self.clone()) }
        else {
            match self.ndim()? {
                0 => self.reshape(vec![1, 1, 1]),
                1 => self.reshape(vec![1, self.get_shape()?[0], 1]),
                2 => self.reshape(vec![self.get_shape()?[0], self.get_shape()?[1], 1]),
                _ => Ok(self.clone()),
            }
        }
    }
}

impl <N: Numeric> Array<N> {

    pub(crate) fn normalize_axis(axis: isize, ndim: usize) -> usize {
        if axis < 0 { (axis + ndim as isize) as usize }
        else { axis as usize }
    }
}