1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
use num_traits::NumCast;
use crate::base::base_array::ArrayBase;
#[derive(Clone, Debug)]
pub struct Array {
pub(crate) elements: Vec<f64>,
pub(crate) shape: Vec<usize>,
}
impl ArrayBase for Array {
fn new<I, A>(elements: I, shape: Vec<usize>) -> Self
where
A: NumCast,
I: IntoIterator<Item=A> + Clone {
assert_eq!(elements.clone().into_iter().count(), shape.iter().product(), "Shape must match values length");
let elems = elements.into_iter().map(|i| i.to_f64().unwrap()).collect();
Array { elements: elems, shape, }
}
fn empty() -> Self {
Array::new(Vec::<f64>::new(), vec![0])
}
fn zeros(shape: Vec<usize>) -> Self {
Array::new(vec![0; shape.iter().product()], shape.clone())
}
fn ones(shape: Vec<usize>) -> Self {
Array::new(vec![1; shape.iter().product()], shape.clone())
}
fn product<F>(&self) -> F
where F: NumCast {
NumCast::from(self.elements.iter().product::<f64>()).unwrap()
}
fn sum<F>(&self) -> F
where F: NumCast {
NumCast::from(self.elements.iter().sum::<f64>()).unwrap()
}
fn ndim(&self) -> usize {
self.shape.len()
}
fn len(&self) -> usize {
self.elements.len()
}
fn is_empty(&self) -> bool {
self.len() == 0
}
}