Crate arpfloat

source ·
Expand description

ARPFloat is an implementation of arbitrary precision floating point data structures and utilities. The library can be used to emulate floating point operation, in software, or create new floating point data types.

Example

  use arpfloat::Float;
  use arpfloat::FP128;

  // Create the number '5' in FP128 format.
  let n = Float::from_f64(5.).cast(FP128);

  // Use Newton-Raphson to find the square root of 5.
  let mut x = n.clone();
  for _ in 0..20 {
      x += (&n / &x)/2;
  }

  println!("fp128: {}", x);
  println!("fp64:  {}", x.as_f64());

The program above will print this output:

fp128: 2.2360679774997896964091736687312763
fp64:  2.23606797749979

The library also provides API that exposes rounding modes, and low-level operations.

    use arpfloat::FP128;
    use arpfloat::RoundingMode::NearestTiesToEven;
    use arpfloat::Float;

    let x = Float::from_u64(FP128, 1<<53);
    let y = Float::from_f64(1000.0).cast(FP128);

    let val = Float::mul_with_rm(&x, &y, NearestTiesToEven);

View the internal representation of numbers:

   use arpfloat::Float;
   use arpfloat::FP16;

   let fp = Float::from_i64(FP16, 15);

   fp.dump(); // Prints FP[+ E=+3 M=11110000000]

   let m = fp.get_mantissa();
    m.dump(); // Prints 11110000000

Control the rounding mode for type conversion:

    use arpfloat::{FP16, FP32, RoundingMode, Float};

    let x = Float::from_u64(FP32, 2649);
    let b = x.cast_with_rm(FP16, RoundingMode::Zero);
    println!("{}", b); // Prints 2648!

Define new float formats and use high-precision transcendental functions:

  use arpfloat::{Float, Semantics};
  // Define a new float format with 120 bits of accuracy, and dynamic range
  // of 2^10.
  let sem = Semantics::new(10, 120);

  let pi = Float::pi(sem);
  let x = Float::exp(&pi);
  println!("e^pi = {}", x); // Prints 23.1406926327792....

Structs

This is the main data structure of this library. It represents an arbitrary-precision floating-point number.
Controls the semantics of a floating point number using two fields: ‘precision’, that determines the number of bits, and ‘exponent’ that controls the dynamic range of the number.

Enums

Defines the supported rounding modes. See IEEE754-2019 Section 4.3 Rounding-direction attributes

Constants

Predefined FP16 float with 5 exponent bits, and 10 mantissa bits.
Predefined FP32 float with 8 exponent bits, and 23 mantissa bits.
Predefined FP64 float with 11 exponent bits, and 52 mantissa bits.
Predefined FP128 float with 15 exponent bits, and 112 mantissa bits.
Predefined FP256 float with 19 exponent bits, and 236 mantissa bits.