ark_transcript/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
// -*- mode: rust; -*-
//
// Copyright (c) 2019 Web 3 Foundation
//
// Authors:
// - Jeffrey Burdges <jeff@web3.foundation>
#![cfg_attr(not(feature = "std"), no_std)]
#![deny(unsafe_code)]
#![doc = include_str!("../README.md")]
use ark_std::{
UniformRand,
borrow::{Borrow,BorrowMut},
io::{self, Read, Write}, // Result
vec::Vec,
};
use ark_serialize::{CanonicalSerialize};
use ark_ff::{Field,PrimeField};
use rand_core::{RngCore,CryptoRng};
pub use sha3::{Shake128};
pub use digest;
use digest::{Update,XofReader,ExtendableOutput};
#[cfg(test)]
mod tests;
#[cfg(any(test, debug_assertions))]
pub mod debug;
/// Trascript labels.
///
/// We prefer if labels are `&'static [u8]` but of course
/// users might require labels provided by another langauge.
pub trait AsLabel {
fn as_label(&self) -> &[u8];
}
impl AsLabel for &'static [u8] {
fn as_label(&self) -> &[u8] { &self[..] }
}
impl<const N: usize> AsLabel for &'static [u8; N] {
fn as_label(&self) -> &[u8] { &self[..] }
}
/// Identify a byte slice as a label, which requires this not be
/// user controlled data.
///
/// We use `Borrow<[u8]>` so that `IsLabel<[u8; N]>`, `IsLabel<&[u8]>`,
/// `IsLabel<[u8]>`, etc. all work correctly. `AsRef` would permit the
/// `IsLabel<str>`, which maybe non-cannonical and cause breakage.
#[derive(Clone,Debug)]
pub struct IsLabel<T>(pub T);
impl<T: Borrow<[u8]>> AsLabel for IsLabel<T> {
fn as_label(&self) -> &[u8] { self.0.borrow() }
}
/// All types interpretable as `Transcript`s, including primarily
/// `impl BorrowMut<Traanscript>` types like `Transcript` and
/// `&mut Transcript`.
///
/// We permit `&[u8]` and `AsLabel<T>` here too, but caution that
/// `&[u8]` needs internal applicaiton domain seperation.
pub trait IntoTranscript {
type Taken: BorrowMut<Transcript>;
fn into_transcript(self) -> Self::Taken;
}
impl<B: BorrowMut<Transcript>> IntoTranscript for B {
type Taken = B;
fn into_transcript(self) -> B { self }
}
impl<T: Borrow<[u8]>> IntoTranscript for IsLabel<T> {
type Taken = Transcript;
fn into_transcript(self) -> Transcript {
Transcript::new_labeled(self)
}
}
impl<'a> IntoTranscript for &'a [u8] {
type Taken = Transcript;
fn into_transcript(self) -> Transcript {
Transcript::from_accumulation(self)
}
}
impl<'a, const N: usize> IntoTranscript for &'a [u8; N] {
type Taken = Transcript;
fn into_transcript(self) -> Transcript {
Transcript::from_accumulation(self)
}
}
/// Inner hasher or accumulator object.
///
/// We make this distinction at runtime instead of at compile-time
/// for simplicity elsewhere.
#[derive(Clone)]
enum Mode {
/// Actual Shake128 hasher being written to.
Hash(Shake128),
/// Accumulate bytes instead of hashing them.
Accumulate(Vec<u8>),
}
impl Mode {
/// Abstracts over the writing modes
fn raw_write(&mut self, bytes: &[u8]) {
match self {
Mode::Hash(hasher) => hasher.update(bytes),
Mode::Accumulate(acc) => acc.extend_from_slice(bytes),
}
}
/// Switch from writing to reading
///
/// Panics if called in accumulation mode
fn raw_reader(self) -> Reader {
#[cfg(feature = "debug-transcript")]
println!("Shake128 {}transcript XoF reader",self.debug_name);
match self {
Mode::Hash(hasher) => Reader(hasher.clone().finalize_xof()),
Mode::Accumulate(acc) => {
let mut t = Transcript::from_accumulation(acc);
t.seperate();
t.mode.raw_reader()
}
}
}
}
/// Shake128 transcript style hasher.
#[derive(Clone)]
pub struct Transcript {
/// Length writen between `seperate()` calls. Always less than 2^31.
/// `None` means `write` was not yet invoked, so seperate() does nothing.
/// We need this to distinguish zero length write calls.
length: Option<u32>,
/// Actual Shake128 hasher being written to, or maybe an accumulator
mode: Mode,
/// Is this a witness transcript?
#[cfg(feature = "debug-transcript")]
debug_name: &'static str,
}
impl Default for Transcript {
/// Create a fresh empty `Transcript`.
fn default() -> Transcript {
Transcript::new_blank()
}
}
impl Update for Transcript {
fn update(&mut self, bytes: &[u8]) {
self.write_bytes(bytes);
}
}
impl Write for Transcript {
// Always succeed fully
fn write(&mut self, bytes: &[u8]) -> io::Result<usize> {
self.write_bytes(bytes);
Ok(bytes.len())
}
// Always succeed immediately
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}
impl Transcript {
/// Create a `Transcript` from `Shake128`.
pub fn from_shake128(hasher: Shake128) -> Transcript {
Transcript {
length: None,
mode: Mode::Hash(hasher),
#[cfg(feature = "debug-transcript")]
debug_name: "",
}
}
/// Create a `Transcript` from previously accumulated bytes.
///
/// We do not domain seperate these initial bytes, but we domain
/// seperate everything after this, making this safe.
pub fn from_accumulation(acc: impl AsRef<[u8]>) -> Transcript {
let mut hasher = Shake128::default();
hasher.update(acc.as_ref());
Transcript::from_shake128(hasher)
}
/// Create an empty `Transcript`.
pub fn new_blank() -> Transcript {
#[cfg(feature = "debug-transcript")]
println!("Initial Shake128 transcript..");
Transcript::from_accumulation(&[])
}
/// Create a fresh `Transcript` with an initial domain label.
///
/// We implicitly have an initial zero length user data write
/// preceeding this first label.
pub fn new_labeled(label: impl AsLabel) -> Transcript {
let mut t = Transcript::new_blank();
t.label(label);
t
}
/// Create an empty `Transcript` in bytes accumulation mode.
///
/// You cannot create `Reader`s in accumulation mode, but
/// `accumulator_finalize` exports the accumulated `Vec<u8>`.
/// You could then transport this elsewhere and start a
/// real hasher using `from_accumulation`.
pub fn new_blank_accumulator() -> Transcript {
#[cfg(feature = "debug-transcript")]
println!("Initial Shake128 transcript..");
Transcript {
length: None,
mode: Mode::Accumulate(Vec::new()),
#[cfg(feature = "debug-transcript")]
debug_name: "",
}
}
/// Avoid repeated allocations by reserving additional space when in accumulation mode.
pub fn accumulator_reserve(&mut self, additional: usize) {
match &mut self.mode {
Mode::Accumulate(acc) => acc.reserve(additional),
_ => {},
}
}
/// Invokes `seperate` and exports the accumulated transcript bytes,
/// which you later pass into `Transcript::from_accumulation`.
pub fn accumulator_finalize(mut self) -> Vec<u8> {
self.seperate();
match self.mode {
Mode::Hash(_) => panic!("Attempte to accumulator_finalize a hashing Transcript"),
Mode::Accumulate(acc) => acc,
}
}
/// Write basic unlabeled domain seperator into the hasher.
///
/// Implemented by writing in big endian the number of bytes
/// written since the previous `seperate` call, aka I2OSP(len,4)
/// from [rfc8017](https://www.rfc-editor.org/rfc/rfc8017.txt).
///
/// We do nothing unless `write_bytes` was called previously, aka
/// after the previous `seperate` call. Invoking `write_bytes(b"")`
/// before `seperate` forces seperation, aka aligns multiple code
/// paths with convergent hashing, but in which users supply zero
/// length inputs.
pub fn seperate(&mut self) {
#[cfg(feature = "debug-transcript")]
println!("Shake128 {}transcript seperator: {}",self.debug_name, self.length);
if let Some(l) = self.length {
self.mode.raw_write( & l.to_be_bytes() );
}
self.length = None;
}
/// Write bytes into the hasher, increasing doain separator counter.
///
/// We wrap each 2^31 bytes into a seperate domain, instead of
/// producing an error.
pub fn write_bytes(&mut self, mut bytes: &[u8]) {
const HIGH: u32 = 0x80000000;
loop {
let length = self.length.get_or_insert(0);
let l = ark_std::cmp::min( (HIGH - 1 - *length) as usize, bytes.len() );
#[cfg(feature = "debug-transcript")]
match ark_std::str::from_utf8(bytes) {
Ok(s) => {
println!("Shake128 {}transcript write of {} bytes: b\"{}\"", self.debug_name, l, s);
}
Err(_) => {
println!("Shake128 {}transcript write of {} bytes out of {}", self.debug_name, l, bytes.len());
}
}
self.mode.raw_write( &bytes[0..l] );
bytes = &bytes[l..];
if bytes.len() == 0 {
*length += u32::try_from(l).unwrap();
return;
}
*length |= HIGH;
self.seperate();
}
}
/*
/// I2OSP(len,4) from [rfc8017](https://www.rfc-editor.org/rfc/rfc8017.txt)
/// with our own domain seperation
fn append_u32(&mut self, v: u32) {
self.seperate();
self.write_bytes(&v.to_be_bytes());
self.seperate();
}
*/
/// I2OSP(len,8) from [rfc8017](https://www.rfc-editor.org/rfc/rfc8017.txt)
/// with our own domain seperation
pub fn append_u64(&mut self, v: u64) {
self.seperate();
self.write_bytes(&v.to_be_bytes());
self.seperate();
}
/// Write into the hasher items seralizable by Arkworks.
///
/// We `ensure_seperated` from any previously supplied user data,
/// so we therfore suggest `label` be called in between `append`
/// and `write`s of possibly empty user data.
/// See concerns on `ensure_seperated`.
///
/// We use uncompressed serialization here for performance.
pub fn append<O: CanonicalSerialize+?Sized>(&mut self, itm: &O) {
self.seperate();
itm.serialize_uncompressed(&mut *self)
.expect("ArkTranscript should infaillibly flushed");
self.seperate();
}
// In concrete terms, `t.append(itm);` yields `t.ensure_seperated(); itm.serialize_uncompressed(&t);`,
// while `t.seperate(); t.append(itm);` yields `t.seperate(); itm.serialize_uncompressed(&t);`,
// which differ if preceeded by a `t.write(user_data);` with empty `user_data`.
/// Write into the hasher a slice of items seralizable by Arkworks,
/// exactly like invoking `append` repeatedly.
pub fn append_slice<O,B>(&mut self, itms: &[B])
where O: CanonicalSerialize+?Sized, B: Borrow<O>,
{
self.seperate();
for itm in itms.iter() {
itm.borrow()
.serialize_uncompressed(&mut *self)
.expect("ArkTranscript should infaillibly flushed");
self.seperate();
}
}
/// Write domain separation label into the hasher,
/// after first ending the previous write phase.
pub fn label(&mut self, label: impl AsLabel) {
self.seperate();
self.write_bytes(label.as_label());
self.seperate();
}
/// Create a challenge reader.
///
/// Invoking `self.label(label)` has the same effect upon `self`,
/// but the reader returnned cannot be obtained by any combinataion of other methods.
pub fn challenge(&mut self, label: impl AsLabel) -> Reader {
#[cfg(feature = "debug-transcript")]
println!("Shake128 {}transcript challenge",self.debug_name);
self.label(label);
self.write_bytes(b"challenge");
let reader = self.mode.clone().raw_reader();
self.seperate();
reader
}
/// Forks transcript to prepare a witness reader.
///
/// We `clone` the transcript and `label` this clone, but do not
/// touch the original. After forking, you should write any
/// secret seeds into the transcript, and then invoke `witness`
/// with system randomness.
pub fn fork(&self, label: impl AsLabel) -> Transcript {
let mut fork = self.clone();
#[cfg(feature = "debug-transcript")]
{
fork.debug_name = "witness ";
println!("Shake128 {}transcript forked", self.debug_name);
}
// Invoking label forces an extra `seperate` vs `challenge`
fork.label(label);
fork
}
// In fact, `clone` alone works fine instead here, assuming you
// correctly supply secret seeds and system randomness.
/// Set the `debug_name` if you're doing anything complex, using clone, etc.
#[cfg(feature = "debug-transcript")]
pub fn set_debug_name(&mut self, debug_name: &'static str) {
self.debug_name = debug_name;
}
// #[cfg(not(feature = "debug-transcript"))]
// pub fn set_debug_name(&mut self, debug_name: &'static str) {
// }
/// Create a witness reader from a forked transcript.
///
/// We expect `rng` to be system randomness when used in production,
/// ala `&mut rng_core::OsRng` or maybe `&mut rand::thread_rng()`,
/// as otherwise you incur risks from any weaknesses elsewhere.
///
/// You'll need a deterministic randomness for test vectors of ourse,
/// ala `&mut ark_transcript::debug::TestVectorFakeRng`.
/// We suggest implementing this choice inside your secret key type,
/// along side whatever supplies secret seeds.
pub fn witness(mut self, rng: &mut (impl RngCore+CryptoRng)) -> Reader {
self.seperate();
let mut rand = [0u8; 32];
rng.fill_bytes(&mut rand);
self.write_bytes(&rand);
self.mode.raw_reader()
}
}
/// Shake128 transcript style XoF reader, used for both
/// Fiat-Shamir challenges and witnesses.
#[repr(transparent)]
pub struct Reader(sha3::Shake128Reader);
impl Reader {
/// Read bytes from the transcript into the buffer.
pub fn read_bytes(&mut self, buf: &mut [u8]) {
XofReader::read(&mut self.0, buf);
}
/// Read bytes from the transcript. Always succeed fully.
pub fn read_byte_array<const N: usize>(&mut self) -> [u8; N] {
let mut buf = [0u8; N];
self.read_bytes(&mut buf);
buf
}
/// Sample a `T` using `ark_std:::UniformRand`
///
/// Arkworks always does rejection sampling so far, so
/// constant-time-ness depends the object being sampled.
pub fn read_uniform<T: UniformRand>(&mut self) -> T {
<T as UniformRand>::rand(self)
}
/// Sample a prime field element using reduction mod the order from
/// a 128 bit larger array of random bytes.
///
/// Identical to the [IETF hash-to-curve draft](https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/14/)
/// except we only supports prime fields here, making this
/// compatable with constant-time implementation.
pub fn read_reduce<F: PrimeField>(&mut self) -> F {
xof_read_reduced::<F,Self>(self)
}
}
pub fn xof_read_reduced<F: PrimeField,R: XofReader>(xof: &mut R) -> F {
// The final output of `hash_to_field` will be an array of field
// elements from F::BaseField, each of size `len_per_elem`.
let len_per_base_elem = get_len_per_elem::<F, 128>();
if len_per_base_elem > 256 {
panic!("PrimeField larger than 1913 bits!");
}
// Rust *still* lacks alloca, hence this ugly hack.
let mut alloca = [0u8; 256];
let alloca = &mut alloca[0..len_per_base_elem];
xof.read(alloca);
alloca.reverse(); // Need BE for IRTF draft but Arkworks' LE is faster
F::from_le_bytes_mod_order(&alloca)
}
/// This function computes the length in bytes that a hash function should output
/// for hashing an element of type `Field`.
/// See section 5.1 and 5.3 of the
/// [IETF hash-to-curve standardization draft](https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/14/)
const fn get_len_per_elem<F: Field, const SEC_PARAM: usize>() -> usize {
// ceil(log(p))
let base_field_size_in_bits = F::BasePrimeField::MODULUS_BIT_SIZE as usize;
// ceil(log(p)) + security_parameter
let base_field_size_with_security_padding_in_bits = base_field_size_in_bits + SEC_PARAM;
// ceil( (ceil(log(p)) + security_parameter) / 8)
let bytes_per_base_field_elem =
((base_field_size_with_security_padding_in_bits + 7) / 8) as u64;
bytes_per_base_field_elem as usize
}
impl XofReader for Reader {
fn read(&mut self, dest: &mut [u8]) {
self.read_bytes(dest);
}
}
/// Read bytes from the transcript. Always succeed fully.
impl Read for Reader {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
self.read_bytes(buf);
Ok(buf.len())
}
fn read_exact(&mut self, buf: &mut [u8]) -> io::Result<()> {
self.read_bytes(buf);
Ok(())
}
}
/// Read bytes from the transcript. Always succeed fully
impl RngCore for Reader {
fn next_u32(&mut self) -> u32 {
let mut b = [0u8; 4];
self.read_bytes(&mut b);
u32::from_le_bytes(b)
}
fn next_u64(&mut self) -> u64 {
let mut b = [0u8; 8];
self.read_bytes(&mut b);
u64::from_le_bytes(b)
}
fn fill_bytes(&mut self, dest: &mut [u8]) {
self.read_bytes(dest);
}
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), rand_core::Error> {
self.fill_bytes(dest);
Ok(())
}
}
// impl<T: BorrowMut<Transcript>> CryptoRng for TranscriptIO<T> { }