ark_r1cs_std/alloc.rs
1use crate::Vec;
2use ark_ff::Field;
3use ark_relations::r1cs::{Namespace, SynthesisError};
4use core::borrow::Borrow;
5
6/// Describes the mode that a variable should be allocated in within
7/// a `ConstraintSystem`.
8#[derive(Eq, PartialEq, Ord, PartialOrd, Debug, Copy, Clone)]
9pub enum AllocationMode {
10 /// Indicate to the `ConstraintSystem` that the high-level variable should
11 /// be allocated as a constant. That is, no `Variable`s should be
12 /// generated.
13 Constant = 0,
14
15 /// Indicate to the `ConstraintSystem` that the high-level variable should
16 /// be allocated as a public input to the `ConstraintSystem`.
17 Input = 1,
18
19 /// Indicate to the `ConstraintSystem` that the high-level variable should
20 /// be allocated as a private witness to the `ConstraintSystem`.
21 Witness = 2,
22}
23
24impl AllocationMode {
25 /// Outputs the maximum according to the relation `Constant < Input <
26 /// Witness`.
27 pub fn max(&self, other: Self) -> Self {
28 use AllocationMode::*;
29 match (self, other) {
30 (Constant, _) => other,
31 (Input, Constant) => *self,
32 (Input, _) => other,
33 (Witness, _) => *self,
34 }
35 }
36}
37
38/// Specifies how variables of type `Self` should be allocated in a
39/// `ConstraintSystem`.
40pub trait AllocVar<V: ?Sized, F: Field>: Sized {
41 /// Allocates a new variable of type `Self` in the `ConstraintSystem` `cs`.
42 /// The mode of allocation is decided by `mode`.
43 fn new_variable<T: Borrow<V>>(
44 cs: impl Into<Namespace<F>>,
45 f: impl FnOnce() -> Result<T, SynthesisError>,
46 mode: AllocationMode,
47 ) -> Result<Self, SynthesisError>;
48
49 /// Allocates a new constant of type `Self` in the `ConstraintSystem` `cs`.
50 ///
51 /// This should *not* allocate any new variables or constraints in `cs`.
52 #[tracing::instrument(target = "r1cs", skip(cs, t))]
53 fn new_constant(
54 cs: impl Into<Namespace<F>>,
55 t: impl Borrow<V>,
56 ) -> Result<Self, SynthesisError> {
57 Self::new_variable(cs, || Ok(t), AllocationMode::Constant)
58 }
59
60 /// Allocates a new public input of type `Self` in the `ConstraintSystem`
61 /// `cs`.
62 #[tracing::instrument(target = "r1cs", skip(cs, f))]
63 fn new_input<T: Borrow<V>>(
64 cs: impl Into<Namespace<F>>,
65 f: impl FnOnce() -> Result<T, SynthesisError>,
66 ) -> Result<Self, SynthesisError> {
67 Self::new_variable(cs, f, AllocationMode::Input)
68 }
69
70 /// Allocates a new private witness of type `Self` in the `ConstraintSystem`
71 /// `cs`.
72 #[tracing::instrument(target = "r1cs", skip(cs, f))]
73 fn new_witness<T: Borrow<V>>(
74 cs: impl Into<Namespace<F>>,
75 f: impl FnOnce() -> Result<T, SynthesisError>,
76 ) -> Result<Self, SynthesisError> {
77 Self::new_variable(cs, f, AllocationMode::Witness)
78 }
79
80 /// Allocates a new constant or private witness of type `Self` in the
81 /// `ConstraintSystem` `cs` with the allocation mode inferred from `cs`.
82 /// A constant is allocated if `cs` is `None`, and a private witness is
83 /// allocated otherwise.
84 ///
85 /// A common use case is the creation of non-deterministic advice (a.k.a.
86 /// hints) in the circuit, where this method can avoid boilerplate code
87 /// while allowing optimization on circuit size.
88 ///
89 /// For example, to compute `x_var / y_var` where `y_var` is a non-zero
90 /// variable, one can write:
91 /// ```
92 /// use ark_ff::PrimeField;
93 /// use ark_r1cs_std::{alloc::AllocVar, fields::{fp::FpVar, FieldVar}, R1CSVar};
94 /// use ark_relations::r1cs::SynthesisError;
95 ///
96 /// fn div<F: PrimeField>(x_var: &FpVar<F>, y_var: &FpVar<F>) -> Result<FpVar<F>, SynthesisError> {
97 /// let cs = x_var.cs().or(y_var.cs());
98 /// let z_var = FpVar::new_variable_with_inferred_mode(cs, || Ok(x_var.value()? / y_var.value()?))?;
99 /// z_var.mul_equals(y_var, x_var)?;
100 /// Ok(z_var)
101 /// }
102 /// ```
103 /// In this example, if either `x_var` or `y_var` is a witness variable,
104 /// then `z_var` is also a witness variable. On the other hand, `z_var`
105 /// is a constant if both `x_var` and `y_var` are constants (i.e., `cs`
106 /// is `None`), and future operations on `z_var` do not generate any
107 /// constraints.
108 ///
109 /// (Note that we use division as an example for simplicity. You may
110 /// call `x_var.mul_by_inverse(y_var)?` directly, which internally works
111 /// similarly to the above code.)
112 #[tracing::instrument(target = "r1cs", skip(cs, f))]
113 fn new_variable_with_inferred_mode<T: Borrow<V>>(
114 cs: impl Into<Namespace<F>>,
115 f: impl FnOnce() -> Result<T, SynthesisError>,
116 ) -> Result<Self, SynthesisError> {
117 let ns: Namespace<F> = cs.into();
118 let cs = ns.cs();
119 let mode = if cs.is_none() {
120 AllocationMode::Constant
121 } else {
122 AllocationMode::Witness
123 };
124 Self::new_variable(cs, f, mode)
125 }
126}
127
128/// This blanket implementation just allocates variables in `Self`
129/// element by element.
130impl<I, F: Field, A: AllocVar<I, F>> AllocVar<[I], F> for Vec<A> {
131 fn new_variable<T: Borrow<[I]>>(
132 cs: impl Into<Namespace<F>>,
133 f: impl FnOnce() -> Result<T, SynthesisError>,
134 mode: AllocationMode,
135 ) -> Result<Self, SynthesisError> {
136 let ns = cs.into();
137 let cs = ns.cs();
138 f().and_then(|v| {
139 v.borrow()
140 .iter()
141 .map(|e| A::new_variable(cs.clone(), || Ok(e), mode))
142 .collect()
143 })
144 }
145}
146
147/// Dummy impl for `()`.
148impl<F: Field> AllocVar<(), F> for () {
149 fn new_variable<T: Borrow<()>>(
150 _cs: impl Into<Namespace<F>>,
151 _f: impl FnOnce() -> Result<T, SynthesisError>,
152 _mode: AllocationMode,
153 ) -> Result<Self, SynthesisError> {
154 Ok(())
155 }
156}
157
158/// This blanket implementation just allocates variables in `Self`
159/// element by element.
160impl<I, F: Field, A: AllocVar<I, F>, const N: usize> AllocVar<[I; N], F> for [A; N] {
161 fn new_variable<T: Borrow<[I; N]>>(
162 cs: impl Into<Namespace<F>>,
163 f: impl FnOnce() -> Result<T, SynthesisError>,
164 mode: AllocationMode,
165 ) -> Result<Self, SynthesisError> {
166 let ns = cs.into();
167 let cs = ns.cs();
168 f().map(|v| {
169 let v = v.borrow();
170 core::array::from_fn(|i| A::new_variable(cs.clone(), || Ok(&v[i]), mode).unwrap())
171 })
172 }
173}
174
175/// This blanket implementation just allocates variables in `Self`
176/// element by element.
177impl<I, F: Field, A: AllocVar<I, F>, const N: usize> AllocVar<[I], F> for [A; N] {
178 fn new_variable<T: Borrow<[I]>>(
179 cs: impl Into<Namespace<F>>,
180 f: impl FnOnce() -> Result<T, SynthesisError>,
181 mode: AllocationMode,
182 ) -> Result<Self, SynthesisError> {
183 let ns = cs.into();
184 let cs = ns.cs();
185 f().map(|v| {
186 let v = v.borrow();
187 core::array::from_fn(|i| A::new_variable(cs.clone(), || Ok(&v[i]), mode).unwrap())
188 })
189 }
190}