ark_r1cs_std/fields/
mod.rs

1use ark_ff::{prelude::*, BitIteratorBE};
2use ark_relations::r1cs::{ConstraintSystemRef, SynthesisError};
3use core::{
4    fmt::Debug,
5    ops::{Add, AddAssign, Mul, MulAssign, Sub, SubAssign},
6};
7
8use crate::convert::{ToBitsGadget, ToBytesGadget, ToConstraintFieldGadget};
9use crate::prelude::*;
10
11/// This module contains a generic implementation of cubic extension field
12/// variables. That is, it implements the R1CS equivalent of
13/// `ark_ff::CubicExtField`.
14pub mod cubic_extension;
15/// This module contains a generic implementation of quadratic extension field
16/// variables. That is, it implements the R1CS equivalent of
17/// `ark_ff::QuadExtField`.
18pub mod quadratic_extension;
19
20/// This module contains a generic implementation of prime field variables.
21/// That is, it implements the R1CS equivalent of `ark_ff::Fp*`.
22pub mod fp;
23
24/// This module contains a generic implementation of "emulated" prime field
25/// variables. It emulates `Fp` arithmetic using `Fq` operations, where `p != q`.
26pub mod emulated_fp;
27
28/// This module contains a generic implementation of the degree-12 tower
29/// extension field. That is, it implements the R1CS equivalent of
30/// `ark_ff::Fp12`
31pub mod fp12;
32/// This module contains a generic implementation of the degree-2 tower
33/// extension field. That is, it implements the R1CS equivalent of
34/// `ark_ff::Fp2`
35pub mod fp2;
36/// This module contains a generic implementation of the degree-3 tower
37/// extension field. That is, it implements the R1CS equivalent of
38/// `ark_ff::Fp3`
39pub mod fp3;
40/// This module contains a generic implementation of the degree-4 tower
41/// extension field. That is, it implements the R1CS equivalent of
42/// `ark_ff::Fp4`
43pub mod fp4;
44/// This module contains a generic implementation of the degree-6 tower
45/// extension field. That is, it implements the R1CS equivalent of
46/// `ark_ff::fp6_2over3::Fp6`
47pub mod fp6_2over3;
48/// This module contains a generic implementation of the degree-6 tower
49/// extension field. That is, it implements the R1CS equivalent of
50/// `ark_ff::fp6_3over2::Fp6`
51pub mod fp6_3over2;
52
53/// This trait is a hack used to work around the lack of implied bounds.
54pub trait FieldOpsBounds<'a, F, T: 'a>:
55    Sized
56    + Add<&'a T, Output = T>
57    + Sub<&'a T, Output = T>
58    + Mul<&'a T, Output = T>
59    + Add<T, Output = T>
60    + Sub<T, Output = T>
61    + Mul<T, Output = T>
62    + Add<F, Output = T>
63    + Sub<F, Output = T>
64    + Mul<F, Output = T>
65{
66}
67
68/// A variable representing a field. Corresponds to the native type `F`.
69pub trait FieldVar<F: Field, ConstraintF: PrimeField>:
70    'static
71    + Clone
72    + From<Boolean<ConstraintF>>
73    + R1CSVar<ConstraintF, Value = F>
74    + EqGadget<ConstraintF>
75    + ToBitsGadget<ConstraintF>
76    + AllocVar<F, ConstraintF>
77    + ToBytesGadget<ConstraintF>
78    + CondSelectGadget<ConstraintF>
79    + ToConstraintFieldGadget<ConstraintF>
80    + for<'a> FieldOpsBounds<'a, F, Self>
81    + for<'a> AddAssign<&'a Self>
82    + for<'a> SubAssign<&'a Self>
83    + for<'a> MulAssign<&'a Self>
84    + AddAssign<Self>
85    + SubAssign<Self>
86    + MulAssign<Self>
87    + AddAssign<F>
88    + SubAssign<F>
89    + MulAssign<F>
90    + Debug
91{
92    /// Returns the constant `F::zero()`.
93    fn zero() -> Self;
94
95    /// Returns a `Boolean` representing whether `self == Self::zero()`.
96    fn is_zero(&self) -> Result<Boolean<ConstraintF>, SynthesisError> {
97        self.is_eq(&Self::zero())
98    }
99
100    /// Returns the constant `F::one()`.
101    fn one() -> Self;
102
103    /// Returns a `Boolean` representing whether `self == Self::one()`.
104    fn is_one(&self) -> Result<Boolean<ConstraintF>, SynthesisError> {
105        self.is_eq(&Self::one())
106    }
107
108    /// Returns a constant with value `v`.
109    ///
110    /// This *should not* allocate any variables.
111    fn constant(v: F) -> Self;
112
113    /// Computes `self + self`.
114    fn double(&self) -> Result<Self, SynthesisError> {
115        Ok(self.clone() + self)
116    }
117
118    /// Sets `self = self + self`.
119    fn double_in_place(&mut self) -> Result<&mut Self, SynthesisError> {
120        *self += self.double()?;
121        Ok(self)
122    }
123
124    /// Coputes `-self`.
125    fn negate(&self) -> Result<Self, SynthesisError>;
126
127    /// Sets `self = -self`.
128    #[inline]
129    fn negate_in_place(&mut self) -> Result<&mut Self, SynthesisError> {
130        *self = self.negate()?;
131        Ok(self)
132    }
133
134    /// Computes `self * self`.
135    ///
136    /// A default implementation is provided which just invokes the underlying
137    /// multiplication routine. However, this method should be specialized
138    /// for extension fields, where faster algorithms exist for squaring.
139    fn square(&self) -> Result<Self, SynthesisError> {
140        Ok(self.clone() * self)
141    }
142
143    /// Sets `self = self.square()`.
144    fn square_in_place(&mut self) -> Result<&mut Self, SynthesisError> {
145        *self = self.square()?;
146        Ok(self)
147    }
148
149    /// Enforces that `self * other == result`.
150    fn mul_equals(&self, other: &Self, result: &Self) -> Result<(), SynthesisError> {
151        let actual_result = self.clone() * other;
152        result.enforce_equal(&actual_result)
153    }
154
155    /// Enforces that `self * self == result`.
156    fn square_equals(&self, result: &Self) -> Result<(), SynthesisError> {
157        let actual_result = self.square()?;
158        result.enforce_equal(&actual_result)
159    }
160
161    /// Computes `result` such that `self * result == Self::one()`.
162    fn inverse(&self) -> Result<Self, SynthesisError>;
163
164    /// Returns `(self / d)`.
165    /// The constraint system will be unsatisfiable when `d = 0`.
166    fn mul_by_inverse(&self, d: &Self) -> Result<Self, SynthesisError> {
167        // Enforce that `d` is not zero.
168        d.enforce_not_equal(&Self::zero())?;
169        self.mul_by_inverse_unchecked(d)
170    }
171
172    /// Returns `(self / d)`.
173    ///
174    /// The precondition for this method is that `d != 0`. If `d == 0`, this
175    /// method offers no guarantees about the soundness of the resulting
176    /// constraint system. For example, if `self == d == 0`, the current
177    /// implementation allows the constraint system to be trivially satisfiable.
178    fn mul_by_inverse_unchecked(&self, d: &Self) -> Result<Self, SynthesisError> {
179        let cs = self.cs().or(d.cs());
180        match cs {
181            // If we're in the constant case, we just allocate a new constant having value equalling
182            // `self * d.inverse()`.
183            ConstraintSystemRef::None => Self::new_constant(
184                cs,
185                self.value()? * d.value()?.inverse().expect("division by zero"),
186            ),
187            // If not, we allocate `result` as a new witness having value `self * d.inverse()`,
188            // and check that `result * d = self`.
189            _ => {
190                let result = Self::new_witness(ark_relations::ns!(cs, "self  * d_inv"), || {
191                    Ok(self.value()? * &d.value()?.inverse().unwrap_or(F::zero()))
192                })?;
193                result.mul_equals(d, self)?;
194                Ok(result)
195            },
196        }
197    }
198
199    /// Computes the frobenius map over `self`.
200    fn frobenius_map(&self, power: usize) -> Result<Self, SynthesisError>;
201
202    /// Sets `self = self.frobenius_map()`.
203    fn frobenius_map_in_place(&mut self, power: usize) -> Result<&mut Self, SynthesisError> {
204        *self = self.frobenius_map(power)?;
205        Ok(self)
206    }
207
208    /// Comptues `self^bits`, where `bits` is a *little-endian* bit-wise
209    /// decomposition of the exponent.
210    fn pow_le(&self, bits: &[Boolean<ConstraintF>]) -> Result<Self, SynthesisError> {
211        let mut res = Self::one();
212        let mut power = self.clone();
213        for bit in bits {
214            let tmp = res.clone() * &power;
215            res = bit.select(&tmp, &res)?;
216            power.square_in_place()?;
217        }
218        Ok(res)
219    }
220
221    /// Computes `self^S`, where S is interpreted as an little-endian
222    /// u64-decomposition of an integer.
223    fn pow_by_constant<S: AsRef<[u64]>>(&self, exp: S) -> Result<Self, SynthesisError> {
224        let mut res = Self::one();
225        for i in BitIteratorBE::without_leading_zeros(exp) {
226            res.square_in_place()?;
227            if i {
228                res *= self;
229            }
230        }
231        Ok(res)
232    }
233}