1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
//! Defines an MPC fabric for the protocol
//!
//! The fabric essentially acts as a dependency injection layer. That is, the MpcFabric
//! creates and manages dependencies needed to allocate network values. This provides a
//! cleaner interface for consumers of the library; i.e. clients do not have to hold onto
//! references of the network layer or the beaver sources to allocate values.
mod executor;
mod network_sender;
mod result;
use ark_ec::CurveGroup;
#[cfg(feature = "benchmarks")]
pub use executor::{Executor, ExecutorMessage};
#[cfg(not(feature = "benchmarks"))]
use executor::{Executor, ExecutorMessage};
use rand::thread_rng;
pub use result::{ResultHandle, ResultId, ResultValue};
use futures::executor::block_on;
use tracing::log;
use crossbeam::queue::SegQueue;
use kanal::Sender as KanalSender;
use std::{
fmt::{Debug, Formatter, Result as FmtResult},
sync::{
atomic::{AtomicUsize, Ordering},
Arc, Mutex,
},
};
use tokio::sync::broadcast::{self, Sender as BroadcastSender};
use itertools::Itertools;
use crate::{
algebra::{
authenticated_curve::AuthenticatedPointResult,
authenticated_scalar::AuthenticatedScalarResult,
curve::{BatchCurvePointResult, CurvePoint, CurvePointResult},
mpc_curve::MpcPointResult,
mpc_scalar::MpcScalarResult,
scalar::{BatchScalarResult, Scalar, ScalarResult},
},
beaver::SharedValueSource,
network::{MpcNetwork, NetworkOutbound, NetworkPayload, PartyId},
PARTY0,
};
use self::{
network_sender::NetworkSender,
result::{OpResult, ResultWaiter},
};
/// The result id that is hardcoded to zero
const RESULT_ZERO: ResultId = 0;
/// The result id that is hardcoded to one
const RESULT_ONE: ResultId = 1;
/// The result id that is hardcoded to the curve identity point
const RESULT_IDENTITY: ResultId = 2;
/// The number of constant results allocated in the fabric, i.e. those defined above
const N_CONSTANT_RESULTS: usize = 3;
/// The default size hint to give the fabric for buffer pre-allocation
const DEFAULT_SIZE_HINT: usize = 10_000;
/// A type alias for the identifier used for a gate
pub type OperationId = usize;
/// An operation within the network, describes the arguments and function to evaluate
/// once the arguments are ready
///
/// `N` represents the number of results that this operation outputs
#[derive(Clone)]
pub struct Operation<C: CurveGroup> {
/// Identifier of the result that this operation emits
id: OperationId,
/// The result ID of the first result in the outputs
result_id: ResultId,
/// The number of outputs this operation produces
output_arity: usize,
/// The number of arguments that are still in-flight for this operation
inflight_args: usize,
/// The IDs of the inputs to this operation
args: Vec<ResultId>,
/// The type of the operation
op_type: OperationType<C>,
}
impl<C: CurveGroup> Operation<C> {
/// Get the result IDs for an operation
pub fn result_ids(&self) -> Vec<ResultId> {
(self.result_id..self.result_id + self.output_arity).collect_vec()
}
}
impl<C: CurveGroup> Debug for Operation<C> {
fn fmt(&self, f: &mut Formatter<'_>) -> FmtResult {
write!(f, "Operation {}", self.id)
}
}
/// Defines the different types of operations available in the computation graph
pub enum OperationType<C: CurveGroup> {
/// A gate operation; may be evaluated locally given its ready inputs
Gate {
/// The function to apply to the inputs
function: Box<dyn FnOnce(Vec<ResultValue<C>>) -> ResultValue<C> + Send + Sync>,
},
/// A gate operation that has output arity greater than one
///
/// We separate this out to avoid vector allocation for result values of arity one
GateBatch {
/// The function to apply to the inputs
#[allow(clippy::type_complexity)]
function: Box<dyn FnOnce(Vec<ResultValue<C>>) -> Vec<ResultValue<C>> + Send + Sync>,
},
/// A network operation, requires that a value be sent over the network
Network {
/// The function to apply to the inputs to derive a Network payload
function: Box<dyn FnOnce(Vec<ResultValue<C>>) -> NetworkPayload<C> + Send + Sync>,
},
}
/// A clone implementation, never concretely called but used as a Marker type to allow
/// pre-allocating buffer space for `Operation`s
impl<C: CurveGroup> Clone for OperationType<C> {
fn clone(&self) -> Self {
panic!("cannot clone `OperationType`")
}
}
impl<C: CurveGroup> Debug for OperationType<C> {
fn fmt(&self, f: &mut Formatter<'_>) -> FmtResult {
match self {
OperationType::Gate { .. } => write!(f, "Gate"),
OperationType::GateBatch { .. } => write!(f, "GateBatch"),
OperationType::Network { .. } => write!(f, "Network"),
}
}
}
/// A fabric for the MPC protocol, defines a dependency injection layer that dynamically schedules
/// circuit gate evaluations onto the network to be executed
///
/// The fabric does not block on gate evaluations, but instead returns a handle to a future result
/// that may be polled to obtain the materialized result. This allows the application layer to
/// continue using the fabric, scheduling more gates to be evaluated and maximally exploiting
/// gate-level parallelism within the circuit
#[derive(Clone)]
pub struct MpcFabric<C: CurveGroup> {
/// The inner fabric
#[cfg(not(feature = "benchmarks"))]
inner: Arc<FabricInner<C>>,
/// The inner fabric, accessible publicly for benchmark mocking
#[cfg(feature = "benchmarks")]
pub inner: Arc<FabricInner<C>>,
/// The local party's share of the global MAC key
///
/// The parties collectively hold an additive sharing of the global key
///
/// We wrap in a reference counting structure to avoid recursive type issues
#[cfg(not(feature = "benchmarks"))]
mac_key: Option<Arc<MpcScalarResult<C>>>,
/// The MAC key, accessible publicly for benchmark mocking
#[cfg(feature = "benchmarks")]
pub mac_key: Option<Arc<MpcScalarResult<C>>>,
/// The channel on which shutdown messages are sent to blocking workers
#[cfg(not(feature = "benchmarks"))]
shutdown: BroadcastSender<()>,
/// The shutdown channel, made publicly available for benchmark mocking
#[cfg(feature = "benchmarks")]
pub shutdown: BroadcastSender<()>,
}
impl<C: CurveGroup> Debug for MpcFabric<C> {
fn fmt(&self, f: &mut Formatter<'_>) -> FmtResult {
write!(f, "MpcFabric")
}
}
/// The inner component of the fabric, allows the constructor to allocate executor and network
/// sender objects at the same level as the fabric
#[derive(Clone)]
pub struct FabricInner<C: CurveGroup> {
/// The ID of the local party in the MPC execution
party_id: u64,
/// The next identifier to assign to a result
next_result_id: Arc<AtomicUsize>,
/// The next identifier to assign to an operation
next_op_id: Arc<AtomicUsize>,
/// A sender to the executor
execution_queue: Arc<SegQueue<ExecutorMessage<C>>>,
/// The underlying queue to the network
outbound_queue: KanalSender<NetworkOutbound<C>>,
/// The underlying shared randomness source
beaver_source: Arc<Mutex<Box<dyn SharedValueSource<C>>>>,
}
impl<C: CurveGroup> Debug for FabricInner<C> {
fn fmt(&self, f: &mut Formatter<'_>) -> FmtResult {
write!(f, "FabricInner")
}
}
impl<C: CurveGroup> FabricInner<C> {
/// Constructor
pub fn new<S: 'static + SharedValueSource<C>>(
party_id: u64,
execution_queue: Arc<SegQueue<ExecutorMessage<C>>>,
outbound_queue: KanalSender<NetworkOutbound<C>>,
beaver_source: S,
) -> Self {
// Allocate a zero and a one as well as the curve identity in the fabric to begin,
// for convenience
let zero = ResultValue::Scalar(Scalar::zero());
let one = ResultValue::Scalar(Scalar::one());
let identity = ResultValue::Point(CurvePoint::identity());
for initial_result in vec![
OpResult {
id: RESULT_ZERO,
value: zero,
},
OpResult {
id: RESULT_ONE,
value: one,
},
OpResult {
id: RESULT_IDENTITY,
value: identity,
},
]
.into_iter()
{
execution_queue.push(ExecutorMessage::Result(initial_result));
}
let next_result_id = Arc::new(AtomicUsize::new(N_CONSTANT_RESULTS));
let next_op_id = Arc::new(AtomicUsize::new(0));
Self {
party_id,
next_result_id,
next_op_id,
execution_queue,
outbound_queue,
beaver_source: Arc::new(Mutex::new(Box::new(beaver_source))),
}
}
/// Register a waiter on a result
pub(crate) fn register_waiter(&self, waiter: ResultWaiter<C>) {
self.execution_queue
.push(ExecutorMessage::NewWaiter(waiter));
}
/// Shutdown the inner fabric, by sending a shutdown message to the executor
pub(crate) fn shutdown(&self) {
self.execution_queue.push(ExecutorMessage::Shutdown)
}
/// -----------
/// | Getters |
/// -----------
/// Increment the operation counter and return the existing value
fn new_result_id(&self) -> ResultId {
self.next_result_id.fetch_add(1, Ordering::Relaxed)
}
/// Increment the operation counter and return the existing value
fn new_op_id(&self) -> OperationId {
self.next_op_id.fetch_add(1, Ordering::Relaxed)
}
/// Get the hardcoded zero value in the fabric
pub(crate) fn zero(&self) -> ResultId {
RESULT_ZERO
}
/// Get the hardcoded one value in the fabric
pub(crate) fn one(&self) -> ResultId {
RESULT_ONE
}
/// Get the hardcoded curve identity value in the fabric
pub(crate) fn curve_identity(&self) -> ResultId {
RESULT_IDENTITY
}
// ------------------------
// | Low Level Allocation |
// ------------------------
/// Allocate a new plaintext value in the fabric
pub(crate) fn allocate_value(&self, value: ResultValue<C>) -> ResultId {
// Forward the result to the executor
let id = self.new_result_id();
self.execution_queue
.push(ExecutorMessage::Result(OpResult { id, value }));
id
}
/// Allocate a secret shared value in the network
pub(crate) fn allocate_shared_value(
&self,
my_share: ResultValue<C>,
their_share: ResultValue<C>,
) -> ResultId {
// Forward the local party's share to the executor
let id = self.new_result_id();
self.execution_queue.push(ExecutorMessage::Result(OpResult {
id,
value: my_share,
}));
// Send the counterparty their share
if let Err(e) = self.outbound_queue.send(NetworkOutbound {
result_id: id,
payload: their_share.into(),
}) {
log::error!("error sending share to counterparty: {e:?}");
}
id
}
/// Receive a value from a network operation initiated by a peer
///
/// The peer will already send the value with the corresponding ID, so all that is needed
/// is to allocate a slot in the result buffer for the receipt
pub(crate) fn receive_value(&self) -> ResultId {
self.new_result_id()
}
// --------------
// | Operations |
// --------------
/// Allocate a new in-flight gate operation in the fabric
pub(crate) fn new_op(
&self,
args: Vec<ResultId>,
output_arity: usize,
op_type: OperationType<C>,
) -> Vec<ResultId> {
if matches!(op_type, OperationType::Gate { .. }) {
assert_eq!(output_arity, 1, "gate operations must have arity 1");
}
// Allocate IDs for the results
let ids = (0..output_arity)
.map(|_| self.new_result_id())
.collect_vec();
// Build the operation
let op = Operation {
id: self.new_op_id(),
result_id: ids[0],
output_arity,
args,
inflight_args: 0,
op_type,
};
// Forward the op to the executor
self.execution_queue.push(ExecutorMessage::Op(op));
ids
}
}
impl<C: CurveGroup> MpcFabric<C> {
/// Constructor
pub fn new<N: 'static + MpcNetwork<C>, S: 'static + SharedValueSource<C>>(
network: N,
beaver_source: S,
) -> Self {
Self::new_with_size_hint(DEFAULT_SIZE_HINT, network, beaver_source)
}
/// Constructor that takes an additional size hint, indicating how much buffer space
/// the fabric should allocate for results. The size is given in number of gates
pub fn new_with_size_hint<N: 'static + MpcNetwork<C>, S: 'static + SharedValueSource<C>>(
size_hint: usize,
network: N,
beaver_source: S,
) -> Self {
// Build communication primitives
let execution_queue = Arc::new(SegQueue::new());
let (outbound_sender, outbound_receiver) = kanal::unbounded_async();
let (shutdown_sender, shutdown_receiver) = broadcast::channel(1 /* capacity */);
// Build a fabric
let fabric = FabricInner::new(
network.party_id(),
execution_queue.clone(),
outbound_sender.to_sync(),
beaver_source,
);
// Start a network sender and operator executor
let network_sender = NetworkSender::new(
outbound_receiver,
execution_queue.clone(),
network,
shutdown_receiver,
);
tokio::task::spawn_blocking(move || block_on(network_sender.run()));
let executor = Executor::new(size_hint, execution_queue, fabric.clone());
tokio::task::spawn_blocking(move || executor.run());
// Create the fabric and fill in the MAC key after
let mut self_ = Self {
inner: Arc::new(fabric.clone()),
shutdown: shutdown_sender,
mac_key: None,
};
// Sample a MAC key from the pre-shared values in the beaver source
let mac_key_id = fabric.allocate_value(ResultValue::Scalar(
fabric
.beaver_source
.lock()
.expect("beaver source poisoned")
.next_shared_value(),
));
let mac_key = MpcScalarResult::new_shared(ResultHandle::new(mac_key_id, self_.clone()));
// Set the MAC key
self_.mac_key.replace(Arc::new(mac_key));
self_
}
/// Get the party ID of the local party
pub fn party_id(&self) -> PartyId {
self.inner.party_id
}
/// Shutdown the fabric and the threads it has spawned
pub fn shutdown(self) {
log::debug!("shutting down fabric");
self.inner.shutdown();
self.shutdown
.send(())
.expect("error sending shutdown signal");
}
/// Register a waiter on a result
pub fn register_waiter(&self, waiter: ResultWaiter<C>) {
self.inner.register_waiter(waiter);
}
/// Immutably borrow the MAC key
pub(crate) fn borrow_mac_key(&self) -> &MpcScalarResult<C> {
// Unwrap is safe, the constructor sets the MAC key
self.mac_key.as_ref().unwrap()
}
// ------------------------
// | Constants Allocation |
// ------------------------
/// Get the hardcoded zero wire as a raw `ScalarResult`
pub fn zero(&self) -> ScalarResult<C> {
ResultHandle::new(self.inner.zero(), self.clone())
}
/// Get the shared zero value as an `MpcScalarResult`
fn zero_shared(&self) -> MpcScalarResult<C> {
MpcScalarResult::new_shared(self.zero())
}
/// Get the hardcoded zero wire as an `AuthenticatedScalarResult`
///
/// Both parties hold the share 0 directly in this case
pub fn zero_authenticated(&self) -> AuthenticatedScalarResult<C> {
let zero_value = self.zero();
let share_value = self.zero_shared();
let mac_value = self.zero_shared();
AuthenticatedScalarResult {
share: share_value,
mac: mac_value,
public_modifier: zero_value,
}
}
/// Get a batch of references to the zero wire as an `AuthenticatedScalarResult`
pub fn zeros_authenticated(&self, n: usize) -> Vec<AuthenticatedScalarResult<C>> {
let val = self.zero_authenticated();
(0..n).map(|_| val.clone()).collect_vec()
}
/// Get the hardcoded one wire as a raw `ScalarResult`
pub fn one(&self) -> ScalarResult<C> {
ResultHandle::new(self.inner.one(), self.clone())
}
/// Get the hardcoded shared one wire as an `MpcScalarResult`
fn one_shared(&self) -> MpcScalarResult<C> {
MpcScalarResult::new_shared(self.one())
}
/// Get the hardcoded one wire as an `AuthenticatedScalarResult`
///
/// Party 0 holds the value zero and party 1 holds the value one
pub fn one_authenticated(&self) -> AuthenticatedScalarResult<C> {
if self.party_id() == PARTY0 {
let zero_value = self.zero();
let share_value = self.zero_shared();
let mac_value = self.zero_shared();
AuthenticatedScalarResult {
share: share_value,
mac: mac_value,
public_modifier: zero_value,
}
} else {
let zero_value = self.zero();
let share_value = self.one_shared();
let mac_value = self.borrow_mac_key().clone();
AuthenticatedScalarResult {
share: share_value,
mac: mac_value,
public_modifier: zero_value,
}
}
}
/// Get a batch of references to the one wire as an `AuthenticatedScalarResult`
pub fn ones_authenticated(&self, n: usize) -> Vec<AuthenticatedScalarResult<C>> {
let val = self.one_authenticated();
(0..n).map(|_| val.clone()).collect_vec()
}
/// Get the hardcoded curve identity wire as a raw `CurvePointResult`
pub fn curve_identity(&self) -> CurvePointResult<C> {
ResultHandle::new(self.inner.curve_identity(), self.clone())
}
/// Get the hardcoded shared curve identity wire as an `MpcPointResult`
fn curve_identity_shared(&self) -> MpcPointResult<C> {
MpcPointResult::new_shared(self.curve_identity())
}
/// Get the hardcoded curve identity wire as an `AuthenticatedPointResult`
///
/// Both parties hold the identity point directly in this case
pub fn curve_identity_authenticated(&self) -> AuthenticatedPointResult<C> {
let identity_val = self.curve_identity();
let share_value = self.curve_identity_shared();
let mac_value = self.curve_identity_shared();
AuthenticatedPointResult {
share: share_value,
mac: mac_value,
public_modifier: identity_val,
}
}
// -------------------
// | Wire Allocation |
// -------------------
/// Allocate a shared value in the fabric
fn allocate_shared_value<T: From<ResultValue<C>>>(
&self,
my_share: ResultValue<C>,
their_share: ResultValue<C>,
) -> ResultHandle<C, T> {
let id = self.inner.allocate_shared_value(my_share, their_share);
ResultHandle::new(id, self.clone())
}
/// Share a `Scalar` value with the counterparty
pub fn share_scalar<T: Into<Scalar<C>>>(
&self,
val: T,
sender: PartyId,
) -> AuthenticatedScalarResult<C> {
let scalar: ScalarResult<C> = if self.party_id() == sender {
let scalar_val = val.into();
let mut rng = thread_rng();
let random = Scalar::random(&mut rng);
let (my_share, their_share) = (scalar_val - random, random);
self.allocate_shared_value(
ResultValue::Scalar(my_share),
ResultValue::Scalar(their_share),
)
} else {
self.receive_value()
};
AuthenticatedScalarResult::new_shared(scalar)
}
/// Share a batch of `Scalar` values with the counterparty
pub fn batch_share_scalar<T: Into<Scalar<C>>>(
&self,
vals: Vec<T>,
sender: PartyId,
) -> Vec<AuthenticatedScalarResult<C>> {
let n = vals.len();
let shares: BatchScalarResult<C> = if self.party_id() == sender {
let vals = vals.into_iter().map(|val| val.into()).collect_vec();
let mut rng = thread_rng();
let peer_shares = (0..vals.len())
.map(|_| Scalar::random(&mut rng))
.collect_vec();
let my_shares = vals
.iter()
.zip(peer_shares.iter())
.map(|(val, share)| val - share)
.collect_vec();
self.allocate_shared_value(
ResultValue::ScalarBatch(my_shares),
ResultValue::ScalarBatch(peer_shares),
)
} else {
self.receive_value()
};
AuthenticatedScalarResult::new_shared_from_batch_result(shares, n)
}
/// Share a `CurvePoint` value with the counterparty
pub fn share_point(&self, val: CurvePoint<C>, sender: PartyId) -> AuthenticatedPointResult<C> {
let point: CurvePointResult<C> = if self.party_id() == sender {
// As mentioned in https://eprint.iacr.org/2009/226.pdf
// it is okay to sample a random point by sampling a random `Scalar` and multiplying
// by the generator in the case that the discrete log of the output may be leaked with
// respect to the generator. Leaking the discrete log (i.e. the random `Scalar`) is okay
// when it is used to generate secret shares
let mut rng = thread_rng();
let random = Scalar::random(&mut rng);
let random_point = random * CurvePoint::generator();
let (my_share, their_share) = (val - random_point, random_point);
self.allocate_shared_value(
ResultValue::Point(my_share),
ResultValue::Point(their_share),
)
} else {
self.receive_value()
};
AuthenticatedPointResult::new_shared(point)
}
/// Share a batch of `CurvePoint`s with the counterparty
pub fn batch_share_point(
&self,
vals: Vec<CurvePoint<C>>,
sender: PartyId,
) -> Vec<AuthenticatedPointResult<C>> {
let n = vals.len();
let shares: BatchCurvePointResult<C> = if self.party_id() == sender {
let mut rng = thread_rng();
let generator = CurvePoint::generator();
let peer_shares = (0..vals.len())
.map(|_| {
let discrete_log = Scalar::random(&mut rng);
discrete_log * generator
})
.collect_vec();
let my_shares = vals
.iter()
.zip(peer_shares.iter())
.map(|(val, share)| val - share)
.collect_vec();
self.allocate_shared_value(
ResultValue::PointBatch(my_shares),
ResultValue::PointBatch(peer_shares),
)
} else {
self.receive_value()
};
AuthenticatedPointResult::new_shared_from_batch_result(shares, n)
}
/// Allocate a public value in the fabric
pub fn allocate_scalar<T: Into<Scalar<C>>>(&self, value: T) -> ScalarResult<C> {
let id = self.inner.allocate_value(ResultValue::Scalar(value.into()));
ResultHandle::new(id, self.clone())
}
/// Allocate a batch of scalars in the fabric
pub fn allocate_scalars<T: Into<Scalar<C>>>(&self, values: Vec<T>) -> Vec<ScalarResult<C>> {
values
.into_iter()
.map(|value| self.allocate_scalar(value))
.collect_vec()
}
/// Allocate a scalar as a secret share of an already shared value
pub fn allocate_preshared_scalar<T: Into<Scalar<C>>>(
&self,
value: T,
) -> AuthenticatedScalarResult<C> {
let allocated = self.allocate_scalar(value);
AuthenticatedScalarResult::new_shared(allocated)
}
/// Allocate a batch of scalars as secret shares of already shared values
pub fn batch_allocate_preshared_scalar<T: Into<Scalar<C>>>(
&self,
values: Vec<T>,
) -> Vec<AuthenticatedScalarResult<C>> {
let values = self.allocate_scalars(values);
AuthenticatedScalarResult::new_shared_batch(&values)
}
/// Allocate a public curve point in the fabric
pub fn allocate_point(&self, value: CurvePoint<C>) -> CurvePointResult<C> {
let id = self.inner.allocate_value(ResultValue::Point(value));
ResultHandle::new(id, self.clone())
}
/// Allocate a batch of points in the fabric
pub fn allocate_points(&self, values: Vec<CurvePoint<C>>) -> Vec<CurvePointResult<C>> {
values
.into_iter()
.map(|value| self.allocate_point(value))
.collect_vec()
}
/// Send a value to the peer, placing the identity in the local result buffer at the send ID
pub fn send_value<T: From<ResultValue<C>> + Into<NetworkPayload<C>>>(
&self,
value: ResultHandle<C, T>,
) -> ResultHandle<C, T> {
self.new_network_op(vec![value.id], |mut args| args.remove(0).into())
}
/// Send a batch of values to the counterparty
pub fn send_values<T>(&self, values: &[ResultHandle<C, T>]) -> ResultHandle<C, Vec<T>>
where
T: From<ResultValue<C>>,
Vec<T>: Into<NetworkPayload<C>> + From<ResultValue<C>>,
{
let ids = values.iter().map(|v| v.id).collect_vec();
self.new_network_op(ids, |args| {
let payload: Vec<T> = args.into_iter().map(|val| val.into()).collect();
payload.into()
})
}
/// Receive a value from the peer
pub fn receive_value<T: From<ResultValue<C>>>(&self) -> ResultHandle<C, T> {
let id = self.inner.receive_value();
ResultHandle::new(id, self.clone())
}
/// Exchange a value with the peer, i.e. send then receive or receive then send
/// based on the party ID
///
/// Returns a handle to the received value, which will be different for different parties
pub fn exchange_value<T: From<ResultValue<C>> + Into<NetworkPayload<C>>>(
&self,
value: ResultHandle<C, T>,
) -> ResultHandle<C, T> {
if self.party_id() == PARTY0 {
// Party 0 sends first then receives
self.send_value(value);
self.receive_value()
} else {
// Party 1 receives first then sends
let handle = self.receive_value();
self.send_value(value);
handle
}
}
/// Exchange a batch of values with the peer, i.e. send then receive or receive then send
/// based on party ID
pub fn exchange_values<T>(&self, values: &[ResultHandle<C, T>]) -> ResultHandle<C, Vec<T>>
where
T: From<ResultValue<C>>,
Vec<T>: From<ResultValue<C>> + Into<NetworkPayload<C>>,
{
if self.party_id() == PARTY0 {
self.send_values(values);
self.receive_value()
} else {
let handle = self.receive_value();
self.send_values(values);
handle
}
}
/// Share a public value with the counterparty
pub fn share_plaintext<T>(&self, value: T, sender: PartyId) -> ResultHandle<C, T>
where
T: 'static + From<ResultValue<C>> + Into<NetworkPayload<C>> + Send + Sync,
{
if self.party_id() == sender {
self.new_network_op(vec![], move |_args| value.into())
} else {
self.receive_value()
}
}
/// Share a batch of public values with the counterparty
pub fn batch_share_plaintext<T>(
&self,
values: Vec<T>,
sender: PartyId,
) -> ResultHandle<C, Vec<T>>
where
T: 'static + From<ResultValue<C>> + Send + Sync,
Vec<T>: Into<NetworkPayload<C>> + From<ResultValue<C>>,
{
self.share_plaintext(values, sender)
}
// -------------------
// | Gate Definition |
// -------------------
/// Construct a new gate operation in the fabric, i.e. one that can be evaluated immediate given
/// its inputs
pub fn new_gate_op<F, T>(&self, args: Vec<ResultId>, function: F) -> ResultHandle<C, T>
where
F: 'static + FnOnce(Vec<ResultValue<C>>) -> ResultValue<C> + Send + Sync,
T: From<ResultValue<C>>,
{
let function = Box::new(function);
let id = self.inner.new_op(
args,
1, /* output_arity */
OperationType::Gate { function },
)[0];
ResultHandle::new(id, self.clone())
}
/// Construct a new batch gate operation in the fabric, i.e. one that can be evaluated to return
/// an array of results
///
/// The array must be sized so that the fabric knows how many results to allocate buffer space for
/// ahead of execution
pub fn new_batch_gate_op<F, T>(
&self,
args: Vec<ResultId>,
output_arity: usize,
function: F,
) -> Vec<ResultHandle<C, T>>
where
F: 'static + FnOnce(Vec<ResultValue<C>>) -> Vec<ResultValue<C>> + Send + Sync,
T: From<ResultValue<C>>,
{
let function = Box::new(function);
let ids = self
.inner
.new_op(args, output_arity, OperationType::GateBatch { function });
ids.into_iter()
.map(|id| ResultHandle::new(id, self.clone()))
.collect_vec()
}
/// Construct a new network operation in the fabric, i.e. one that requires a value to be sent
/// over the channel
pub fn new_network_op<F, T>(&self, args: Vec<ResultId>, function: F) -> ResultHandle<C, T>
where
F: 'static + FnOnce(Vec<ResultValue<C>>) -> NetworkPayload<C> + Send + Sync,
T: From<ResultValue<C>>,
{
let function = Box::new(function);
let id = self.inner.new_op(
args,
1, /* output_arity */
OperationType::Network { function },
)[0];
ResultHandle::new(id, self.clone())
}
// -----------------
// | Beaver Source |
// -----------------
/// Sample the next beaver triplet from the beaver source
pub fn next_beaver_triple(
&self,
) -> (MpcScalarResult<C>, MpcScalarResult<C>, MpcScalarResult<C>) {
// Sample the triple and allocate it in the fabric, the counterparty will do the same
let (a, b, c) = self
.inner
.beaver_source
.lock()
.expect("beaver source poisoned")
.next_triplet();
let a_val = self.allocate_scalar(a);
let b_val = self.allocate_scalar(b);
let c_val = self.allocate_scalar(c);
(
MpcScalarResult::new_shared(a_val),
MpcScalarResult::new_shared(b_val),
MpcScalarResult::new_shared(c_val),
)
}
/// Sample a batch of beaver triples
#[allow(clippy::type_complexity)]
pub fn next_beaver_triple_batch(
&self,
n: usize,
) -> (
Vec<MpcScalarResult<C>>,
Vec<MpcScalarResult<C>>,
Vec<MpcScalarResult<C>>,
) {
let (a_vals, b_vals, c_vals) = self
.inner
.beaver_source
.lock()
.expect("beaver source poisoned")
.next_triplet_batch(n);
let a_vals = self
.allocate_scalars(a_vals)
.into_iter()
.map(MpcScalarResult::new_shared)
.collect_vec();
let b_vals = self
.allocate_scalars(b_vals)
.into_iter()
.map(MpcScalarResult::new_shared)
.collect_vec();
let c_vals = self
.allocate_scalars(c_vals)
.into_iter()
.map(MpcScalarResult::new_shared)
.collect_vec();
(a_vals, b_vals, c_vals)
}
/// Sample the next beaver triplet with MACs from the beaver source
///
/// TODO: Authenticate these values either here or in the pre-processing phase as per
/// the SPDZ paper
pub fn next_authenticated_triple(
&self,
) -> (
AuthenticatedScalarResult<C>,
AuthenticatedScalarResult<C>,
AuthenticatedScalarResult<C>,
) {
let (a, b, c) = self
.inner
.beaver_source
.lock()
.expect("beaver source poisoned")
.next_triplet();
let a_val = self.allocate_scalar(a);
let b_val = self.allocate_scalar(b);
let c_val = self.allocate_scalar(c);
(
AuthenticatedScalarResult::new_shared(a_val),
AuthenticatedScalarResult::new_shared(b_val),
AuthenticatedScalarResult::new_shared(c_val),
)
}
/// Sample the next batch of beaver triples as `AuthenticatedScalar`s
#[allow(clippy::type_complexity)]
pub fn next_authenticated_triple_batch(
&self,
n: usize,
) -> (
Vec<AuthenticatedScalarResult<C>>,
Vec<AuthenticatedScalarResult<C>>,
Vec<AuthenticatedScalarResult<C>>,
) {
let (a_vals, b_vals, c_vals) = self
.inner
.beaver_source
.lock()
.expect("beaver source poisoned")
.next_triplet_batch(n);
let a_allocated = self.allocate_scalars(a_vals);
let b_allocated = self.allocate_scalars(b_vals);
let c_allocated = self.allocate_scalars(c_vals);
(
AuthenticatedScalarResult::new_shared_batch(&a_allocated),
AuthenticatedScalarResult::new_shared_batch(&b_allocated),
AuthenticatedScalarResult::new_shared_batch(&c_allocated),
)
}
/// Sample a batch of random shared values from the beaver source
pub fn random_shared_scalars(&self, n: usize) -> Vec<ScalarResult<C>> {
let values_raw = self
.inner
.beaver_source
.lock()
.expect("beaver source poisoned")
.next_shared_value_batch(n);
// Wrap the values in a result handle
values_raw
.into_iter()
.map(|value| self.allocate_scalar(value))
.collect_vec()
}
/// Sample a batch of random shared values from the beaver source and allocate them as `AuthenticatedScalars`
pub fn random_shared_scalars_authenticated(
&self,
n: usize,
) -> Vec<AuthenticatedScalarResult<C>> {
let values_raw = self
.inner
.beaver_source
.lock()
.expect("beaver source poisoned")
.next_shared_value_batch(n);
// Wrap the values in an authenticated wrapper
values_raw
.into_iter()
.map(|value| {
let value = self.allocate_scalar(value);
AuthenticatedScalarResult::new_shared(value)
})
.collect_vec()
}
/// Sample a pair of values that are multiplicative inverses of one another
pub fn random_inverse_pair(
&self,
) -> (AuthenticatedScalarResult<C>, AuthenticatedScalarResult<C>) {
let (l, r) = self
.inner
.beaver_source
.lock()
.unwrap()
.next_shared_inverse_pair();
(
AuthenticatedScalarResult::new_shared(self.allocate_scalar(l)),
AuthenticatedScalarResult::new_shared(self.allocate_scalar(r)),
)
}
/// Sample a batch of values that are multiplicative inverses of one another
pub fn random_inverse_pairs(
&self,
n: usize,
) -> (
Vec<AuthenticatedScalarResult<C>>,
Vec<AuthenticatedScalarResult<C>>,
) {
let (left, right) = self
.inner
.beaver_source
.lock()
.unwrap()
.next_shared_inverse_pair_batch(n);
let left_right = left.into_iter().chain(right.into_iter()).collect_vec();
let allocated_left_right = self.allocate_scalars(left_right);
let authenticated_left_right =
AuthenticatedScalarResult::new_shared_batch(&allocated_left_right);
// Split left and right
let (left, right) = authenticated_left_right.split_at(n);
(left.to_vec(), right.to_vec())
}
/// Sample a random shared bit from the beaver source
pub fn random_shared_bit(&self) -> AuthenticatedScalarResult<C> {
let bit = self
.inner
.beaver_source
.lock()
.expect("beaver source poisoned")
.next_shared_bit();
let bit = self.allocate_scalar(bit);
AuthenticatedScalarResult::new_shared(bit)
}
/// Sample a batch of random shared bits from the beaver source
pub fn random_shared_bits(&self, n: usize) -> Vec<AuthenticatedScalarResult<C>> {
let bits = self
.inner
.beaver_source
.lock()
.expect("beaver source poisoned")
.next_shared_bit_batch(n);
let bits = self.allocate_scalars(bits);
AuthenticatedScalarResult::new_shared_batch(&bits)
}
}