1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
//! Sumcheck Protocol for multilinear extension

use crate::ml_sumcheck::data_structures::{ListOfProductsOfPolynomials, PolynomialInfo};
use crate::ml_sumcheck::protocol::prover::ProverMsg;
use crate::ml_sumcheck::protocol::verifier::SubClaim;
use crate::ml_sumcheck::protocol::IPForMLSumcheck;
use crate::rng::{Blake2s512Rng, FeedableRNG};
use ark_ff::Field;
use ark_std::marker::PhantomData;
use ark_std::vec::Vec;

pub mod protocol;

pub mod data_structures;
#[cfg(test)]
mod test;

/// Sumcheck for products of multilinear polynomial
pub struct MLSumcheck<F: Field>(#[doc(hidden)] PhantomData<F>);

/// proof generated by prover
pub type Proof<F> = Vec<ProverMsg<F>>;

impl<F: Field> MLSumcheck<F> {
    /// extract sum from the proof
    pub fn extract_sum(proof: &Proof<F>) -> F {
        proof[0].evaluations[0] + proof[0].evaluations[1]
    }

    /// generate proof of the sum of polynomial over {0,1}^`num_vars`
    ///
    /// The polynomial is represented by a list of products of polynomials along with its coefficient that is meant to be added together.
    ///
    /// This data structure of the polynomial is a list of list of `(coefficient, DenseMultilinearExtension)`.
    /// * Number of products n = `polynomial.products.len()`,
    /// * Number of multiplicands of ith product m_i = `polynomial.products[i].1.len()`,
    /// * Coefficient of ith product c_i = `polynomial.products[i].0`
    ///
    /// The resulting polynomial is
    ///
    /// $$\sum_{i=0}^{n}C_i\cdot\prod_{j=0}^{m_i}P_{ij}$$
    pub fn prove(polynomial: &ListOfProductsOfPolynomials<F>) -> Result<Proof<F>, crate::Error> {
        let mut fs_rng = Blake2s512Rng::setup();
        fs_rng.feed(&polynomial.info())?;

        let mut prover_state = IPForMLSumcheck::prover_init(&polynomial);
        let mut verifier_msg = None;
        let mut prover_msgs = Vec::with_capacity(polynomial.num_variables);
        for _ in 0..polynomial.num_variables {
            let (prover_msg, prover_state_new) =
                IPForMLSumcheck::prove_round(prover_state, &verifier_msg);
            prover_state = prover_state_new;
            fs_rng.feed(&prover_msg)?;
            prover_msgs.push(prover_msg);
            verifier_msg = Some(IPForMLSumcheck::sample_round(&mut fs_rng));
        }

        Ok(prover_msgs)
    }

    /// verify the claimed sum using the proof
    pub fn verify(
        polynomial_info: &PolynomialInfo,
        claimed_sum: F,
        proof: &Proof<F>,
    ) -> Result<SubClaim<F>, crate::Error> {
        let mut fs_rng = Blake2s512Rng::setup();
        fs_rng.feed(polynomial_info)?;
        let mut verifier_state = IPForMLSumcheck::verifier_init(polynomial_info);
        for i in 0..polynomial_info.num_variables {
            let prover_msg = proof.get(i).expect("proof is incomplete");
            fs_rng.feed(prover_msg)?;
            let result =
                IPForMLSumcheck::verify_round((*prover_msg).clone(), verifier_state, &mut fs_rng);
            verifier_state = result.1;
        }

        Ok(IPForMLSumcheck::check_and_generate_subclaim(
            verifier_state,
            claimed_sum,
        )?)
    }
}