logo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
//! # 📤 Behavior Controller API
//!
//! This API provides functionality to indirectly communicate with external behavior modules.
//!
//! Through this API, a user can retrieve reflection info of all loaded behavior modules, create new
//! behavior instances of a particular type, and send messages to behavior instances.
//!
//! ## Message passing
//!
//! Messages are the protocols through which behaviors communicate. At the lowest level they are
//! serializable Rust structures.
//!
//! The entire message passing flow between this API and behavior modules goes as follows:
//!
//! 1. A user creates [`IncomingMessage`]s and batch sends them to Ark through [`BehaviorController::instances_handle_messages`]
//! 2. Ark owns the actual behavior modules and will, in order, send the [`IncomingMessage`]s to the correct
//!    behavior instances inside external behavior modules
//! 3. A behavior instance will then process the just received message
//! 4. During the processing of a message, a behavior instance can create new [`OutgoingMessage`]s that will be returned to
//!    the user, which then decides what to do with it
//!
//! ## Aspects
//!
//! Aspects are used to associate data with actors, and share it between behaviors. Aspects are just data and
//! don't implement any logic. Through [`BehaviorController::aspect_upsert`], users can sync their aspect data with Ark.
//! Internally, Ark stores aspects in so called "aspect stores", keyed by aspect guid first to be able to iterate on
//! all actors that have a given aspect blazingly fast.
//!
//! ### Why aspects?
//!
//! As each behavior module is a separate Wasm module, behavior instances from separate behavior modules can't access
//! each others memory, meaning there is no direct sharing of state. While state could be asynchronously queried via
//! message passing, aspects allow for a more optimal route for sharing state.

use crate::ffi::behavior_controller_v0 as ffi;
use crate::Error;
pub use ffi::{
    ActorId, AspectAddr, BehaviorModuleId, BehaviorModuleRegistration, BehaviorRegistration,
    BehaviorTypeId, Guid, INVALID_GUID_COMPONENT,
};
use std::rc::Rc;

#[doc(hidden)]
pub use ffi::API as FFI_API;

#[derive(Hash, PartialEq, Eq)]
struct BehaviorInstanceInner(ffi::BehaviorInstanceId);

impl Drop for BehaviorInstanceInner {
    fn drop(&mut self) {
        ffi::instance_destroy(self.0);
    }
}

/// Weak reference to a behavior instance that lives somewhere in an external behavior module.
///
/// Cloning will create another reference to the same behavior instance. If you want to do a deep
/// clone that creates a new instance, use the `BehaviorInstance::deep_clone` function.
///
/// The instance is destroyed when all its weak references are dropped.
#[derive(Clone, Hash, PartialEq, Eq)]
pub struct BehaviorInstance(Rc<BehaviorInstanceInner>);

impl BehaviorInstance {
    /// Create a behavior instance of the specific type with the provided construction parameters
    pub fn new(type_id: BehaviorTypeId, params: &str) -> Self {
        Self(Rc::new(BehaviorInstanceInner(ffi::instance_create(
            type_id.0, params,
        ))))
    }

    /// Restore a behavior instance by deserializing it from a persistent representation
    pub fn restore(type_id: BehaviorTypeId, bytes: &[u8]) -> Self {
        Self(Rc::new(BehaviorInstanceInner(ffi::instance_restore(
            type_id.0, bytes,
        ))))
    }

    /// Creates a clone of the current instance, and returns a reference to the newly created
    /// one.
    pub fn deep_clone(instance: &Self) -> Self {
        Self(Rc::new(BehaviorInstanceInner(ffi::instance_clone(
            instance.0 .0,
        ))))
    }

    /// Persist a behavior instance by serializing it to a blob
    pub fn persist(&self) -> Vec<u8> {
        ffi::instance_persist(self.0 .0)
    }

    /// Retrieve the [`BehaviorTypeId`] of this instance
    pub fn type_id(&self) -> BehaviorTypeId {
        BehaviorTypeId((self.0 .0 >> 32) as ffi::BehaviorTypeIdInner)
    }
}

impl std::fmt::Debug for BehaviorInstance {
    fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(fmt, "BehaviorInstance({})", self.0 .0)
    }
}

/// A command used for [`BehaviorController::aspect_upsert`] to issue an aspect insertion/update
/// that needs to be synced with the host
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub struct AspectUpsert<'a> {
    /// The aspect's address, comprising of an aspect guid and an actor id
    pub addr: AspectAddr,
    /// Serialized aspect payload
    pub serialized_aspect: &'a [u8],
}

impl<'a> From<AspectUpsert<'a>> for ffi::AspectUpsert {
    fn from(upsert: AspectUpsert<'a>) -> Self {
        Self::new(upsert.addr, upsert.serialized_aspect)
    }
}

/// Target address of an incoming (controller -> behavior module) message.
#[derive(Debug, Eq, PartialEq)]
enum IncomingMessageAddr {
    /// This message is targeted at a specific behavior instance.
    Behavior {
        actor_id: ActorId,
        instance: BehaviorInstance,
    },
    /// This message is targeted at the module itself, but can also target a specific behavior
    /// instance.
    Module {
        module_id: u16,
        instance: Option<BehaviorInstance>,
    },
}

/// Represents a message to be sent to a specific behavior instance for processing
///
/// It is "incoming" from the perspective of the behavior instance
#[derive(Debug, Eq, PartialEq)]
pub struct IncomingMessage<'a> {
    /// The target address of this message
    addr: IncomingMessageAddr,
    /// Serialized message payload
    pub serialized_message: &'a [u8],
}

impl<'a> IncomingMessage<'a> {
    /// Creates a new message to a specific behavior instance.
    pub fn new_to_instance(
        instance: BehaviorInstance,
        actor_id: ActorId,
        serialized_message: &'a [u8],
    ) -> Self {
        Self {
            addr: IncomingMessageAddr::Behavior { instance, actor_id },
            serialized_message,
        }
    }

    /// Creates a new message to a specific behavior module, represented by this behavior type.
    pub fn new_to_module(
        type_id: BehaviorTypeId,
        instance: Option<BehaviorInstance>,
        serialized_message: &'a [u8],
    ) -> Self {
        let module_id = (type_id.0 >> 16) as u16;

        if let Some(ref instance) = instance {
            // Sanity-check: the instance's module handle must be the same as the one from the behavior
            // type.
            assert_eq!(
                instance.0 .0 >> 48,
                u64::from(module_id),
                "behavior type and behavior instance must refer to the same behavior module"
            );
        }

        Self {
            addr: IncomingMessageAddr::Module {
                module_id,
                instance,
            },
            serialized_message,
        }
    }
}

impl<'a> From<&IncomingMessage<'a>> for ffi::IncomingMessage {
    fn from(msg: &IncomingMessage<'a>) -> Self {
        let (actor_id, instance_id) = match &msg.addr {
            IncomingMessageAddr::Behavior { actor_id, instance } => (*actor_id, instance.0 .0),
            IncomingMessageAddr::Module {
                module_id,
                instance,
            } => {
                let instance = match instance {
                    Some(instance) => instance.0 .0,
                    None => {
                        (u64::from(*module_id) << 48) | ffi::INCOMING_MESSAGE_NO_INSTANCE_SENTINEL
                    }
                };
                (ffi::CONTROLLER_SENTINEL_ACTOR_ID, instance)
            }
        };
        Self::new(instance_id, actor_id, msg.serialized_message)
    }
}

/// A response message received from a behavior module.
///
/// Can be targeted to an actor itself, or to the behavior controller itself as a system entity.
#[derive(Clone, Debug, Eq, PartialEq, Copy)]
pub enum OutgoingMessageAddr {
    /// Response targeted at a specific actor and behavior.
    Actor {
        /// Actor identifier.
        actor_id: ActorId,
        /// Behavior unique identifier encoded as a GUID; may not be present if the message is
        /// addressed to all the actor's behaviors.
        behavior_guid: Option<u128>,
    },
    /// Response targeted at the controller module itself.
    Controller,
}

impl From<&ffi::OutgoingMessageAddr> for OutgoingMessageAddr {
    fn from(addr: &ffi::OutgoingMessageAddr) -> Self {
        if addr.to_actor_id == ffi::CONTROLLER_SENTINEL_ACTOR_ID {
            Self::Controller
        } else {
            Self::Actor {
                actor_id: addr.to_actor_id,
                behavior_guid: addr.guid(),
            }
        }
    }
}

/// An outgoing message generated by a behavior instance during message processing
///
/// See [`OutgoingMessages`] on how to retrieve individual messages returned
/// from [`BehaviorController::instances_handle_messages`]
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct OutgoingMessage<'a> {
    addr: OutgoingMessageAddr,
    serialized_message: &'a [u8],
}

impl<'a> OutgoingMessage<'a> {
    /// Retrieve the outgoing message's address.
    pub fn addr(&self) -> OutgoingMessageAddr {
        self.addr
    }
    /// Retrieve the outgoing message's serialized bytes as a slice.
    pub fn msg(&self) -> &'a [u8] {
        self.serialized_message
    }
}

/// Collection of outgoing messages returned from [`BehaviorController::instances_handle_messages`]
///
/// Individual messages can be iterated through with [`OutgoingMessages::iter`]
pub struct OutgoingMessages {
    bytes: Vec<u8>,
}

impl OutgoingMessages {
    /// Returns an iterator over the outgoing messages
    pub fn iter(&self) -> OutgoingMessagesIter<'_> {
        OutgoingMessagesIter {
            outgoing_messages: self,
            offset: 0,
        }
    }

    /// Read the [`ffi::OutgoingMessage`] from the byte stream
    fn read_outgoing_msg_ffi(bytes: &[u8], offset: &mut usize) -> Option<ffi::OutgoingMessage> {
        const OUTGOING_MSG_SIZE: usize = std::mem::size_of::<ffi::OutgoingMessage>();

        let result = bytes
            .get((*offset)..(*offset + OUTGOING_MSG_SIZE))
            .map(|slice| unsafe {
                std::mem::transmute::<[u8; OUTGOING_MSG_SIZE], ffi::OutgoingMessage>(
                    slice.try_into().unwrap(),
                )
            });
        *offset += OUTGOING_MSG_SIZE;
        result
    }

    fn read_outgoing_message<'a>(
        bytes: &'a [u8],
        offset: &mut usize,
    ) -> Option<OutgoingMessage<'a>> {
        Self::read_outgoing_msg_ffi(bytes, offset).map(|outgoing| {
            let slice = bytes
                .get((*offset)..((*offset) + outgoing.serialized_message_len as usize))
                .unwrap();
            *offset += outgoing.serialized_message_len as usize;

            OutgoingMessage {
                addr: OutgoingMessageAddr::from(&outgoing.addr),
                serialized_message: slice,
            }
        })
    }
}

/// Iterator for [`OutgoingMessage`] stored in [`OutgoingMessages`]
///
/// Can only be created through [`OutgoingMessages::iter`]
pub struct OutgoingMessagesIter<'a> {
    outgoing_messages: &'a OutgoingMessages,
    offset: usize,
}

impl<'a> Iterator for OutgoingMessagesIter<'a> {
    type Item = OutgoingMessage<'a>;

    fn next(&mut self) -> Option<Self::Item> {
        OutgoingMessages::read_outgoing_message(&self.outgoing_messages.bytes, &mut self.offset)
    }
}

/// The `BehaviorController` API provides functionality for interacting with external behavior modules
#[derive(Copy, Clone)]
pub struct BehaviorController {}

impl BehaviorController {
    /// Returns a serialized JSON vector of bytes with a list of external registration info.
    ///
    /// Only registration info from behavior modules listed in a Cargo.toml's Ark annotation will be returned
    ///
    /// # Example
    ///
    /// At a bare minimum, the JSON vector can be deserialized into a vector of [`BehaviorModuleRegistration`]:
    ///
    /// ```ignore
    /// use ark_api::behavior_controller::BehaviorModuleRegistration;
    ///
    /// let list: Vec<BehaviorModuleRegistration> = serde_json::from_slice(behavior_controller().list_modules()).unwrap();
    /// ```
    ///
    /// If behavior modules were registered with a custom registration format they can be deserialized similarly:
    ///
    /// ```ignore
    /// use ark_api::behavior_controller::BehaviorModuleRegistration;
    ///
    /// // Custom data format used in behavior module registration
    /// #[derive(serde::Deserialize)]
    /// pub struct CustomBehaviorInfo {
    ///    #[serde(flatten)]
    ///    pub info: BehaviorModuleRegistration,
    ///
    ///    pub port_names: Vec<String>,
    ///    pub tag_names: Vec<String>,
    /// }
    ///
    /// let list: Vec<CustomBehaviorInfo> = serde_json::from_slice(behavior_controller().list_modules()).unwrap();
    /// ```
    pub fn list_modules(&self) -> Vec<u8> {
        ffi::list_modules()
    }

    /// Have the specified instances process the provided messages
    ///
    /// This is key functionality of the Behavior Controller API as it will kick off processing
    /// of messages for behavior instances in external behavior modules.
    ///
    /// The following will happen after a call to `instances_handle_messages`:
    ///
    /// 1. In order, Ark will extract the [`IncomingMessage`]'s address and send the message data to the
    ///    correct behavior instance owned by some external behavior module.
    /// 2. A behavior instance will then process the just received message.
    /// 3. During the processing of a message, a behavior instance can create new [`OutgoingMessage`]s that
    ///    will be returned to the user of this API.
    ///
    /// The user can then turn outgoing messages into incoming messages and repeat the above process.
    pub fn instances_handle_messages(&self, messages: &[IncomingMessage<'_>]) -> OutgoingMessages {
        let message_data = messages
            .iter()
            .map(ffi::IncomingMessage::from)
            .collect::<Vec<ffi::IncomingMessage>>();

        OutgoingMessages {
            bytes: ffi::instances_handle_messages(&message_data),
        }
    }

    /// Requests multiple insertions or updates in aspect stores; if an aspect doesn't exist, it's seamlessly
    /// created on the host
    pub fn aspect_upsert(&self, upserts: &[AspectUpsert<'_>]) {
        let upserts = upserts
            .iter()
            .copied()
            .map(ffi::AspectUpsert::from)
            .collect::<Vec<ffi::AspectUpsert>>();

        ffi::aspect_upsert(&upserts);
    }

    /// Requests multiple aspect removals. If the aspect store doesn't exist, nothing happens
    pub fn aspect_remove(&self, removes: &[AspectAddr]) {
        ffi::aspect_remove(removes);
    }

    /// Reset all existing aspect stores to their initial states
    pub fn aspect_reset_all(&self) {
        ffi::aspect_reset_all();
    }

    /// Publishes the module with the given ID and returns a possibly different ID of the published version.
    ///
    /// If the module is already published nothing will happen and the function will return the same ID as the one
    /// provided as an argument.
    pub fn publish(&self, id: &BehaviorModuleId) -> Result<BehaviorModuleId, Error> {
        Ok(BehaviorModuleId::new(ffi::publish(id)?))
    }

    /// Loads the module with the given ID.
    ///
    /// Returns a serialized JSON vector of bytes containing the
    /// external registration info for the loaded module.
    pub fn load_behavior_module(&self, id: &BehaviorModuleId) -> Result<Vec<u8>, Error> {
        Ok(ffi::load_behavior_module(id)?)
    }
}