1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
use super::{ffi, DataHandle, Value, ValueConverter, ValueConverterTrait, WorldData};
pub use crate::api::world::World;
use crate::ColorRgba8;
use crate::Mesh;
pub use ffi::{
GltfFlags, MaterialDesc, MeshOrigin, MeshProperties, MeshRawWithMaterialAndName,
MeshRawWithName, MeshSimplifiedFlags, ResourceHandleRepr,
};
/// Represents a reference to a mesh registered with the world.
#[must_use]
#[derive(Clone, Debug, Eq, PartialEq, Hash)]
pub struct WorldMesh {
pub(crate) mesh: WorldData,
}
impl WorldMesh {
fn convert_to_mesh_raw_with_name(
mesh: &Mesh,
) -> Option<(MeshRawWithName, Vec<ffi::MeshStreamLayout>)> {
let mesh_data = mesh.data.as_ref()?;
let crate::MeshData {
name,
indices,
positions,
normals,
colors,
} = mesh_data;
let mut streams: Vec<ffi::MeshStreamLayout> = vec![];
if !indices.is_empty() {
streams.push(ffi::MeshStreamLayout {
semantic: ffi::MeshStreamSemantic::Indices,
component_format: ffi::MeshComponentFormat::UInt32,
component_count: 1,
buffer_ptr: indices.as_ptr() as u32,
buffer_size: (indices.len() * 4) as u32,
});
}
streams.push(ffi::MeshStreamLayout {
semantic: ffi::MeshStreamSemantic::Positions,
component_format: ffi::MeshComponentFormat::Float32,
component_count: 3,
buffer_ptr: positions.as_ptr() as u32,
buffer_size: (positions.len() * 4 * 3) as u32,
});
if let Some(normals) = normals {
streams.push(ffi::MeshStreamLayout {
semantic: ffi::MeshStreamSemantic::Normals,
component_format: ffi::MeshComponentFormat::Float32,
component_count: 3,
buffer_ptr: normals.as_ptr() as u32,
buffer_size: (normals.len() * 4 * 3) as u32,
});
}
if let Some(colors) = colors {
streams.push(ffi::MeshStreamLayout {
semantic: ffi::MeshStreamSemantic::Colors,
component_format: ffi::MeshComponentFormat::UInt8,
component_count: 4,
buffer_ptr: colors.as_ptr() as u32,
buffer_size: (colors.len() * 4) as u32,
});
}
Some((
ffi::MeshRawWithName {
primitive_topology: ffi::MeshPrimitiveTopology::TriangleList,
streams_ptr: streams.as_ptr() as u32,
num_streams: streams.len() as u32,
debug_name_ptr: name.as_ptr() as u32,
debug_name_size: name.len() as u32,
},
streams,
))
}
fn convert_to_mesh_raw_with_material(
mesh: &Mesh,
material: WorldMaterial,
) -> (MeshRawWithMaterialAndName, Vec<ffi::MeshStreamLayout>) {
let (inner, streams) = Self::convert_to_mesh_raw_with_name(mesh).unwrap();
let handle = std::mem::ManuallyDrop::new(material.data).get_data_handle();
(
ffi::MeshRawWithMaterialAndName {
inner,
material: handle.as_ffi(),
_pad: Default::default(),
},
streams,
)
}
/// Creates a `WorldMesh` from the passed-in raw mesh data.
pub fn create(mesh: Mesh) -> Self {
let data = Self::convert_to_mesh_raw_with_name(&mesh).expect("Could not create mesh.");
Self {
mesh: WorldData::create_struct(ffi::CreateDataType::MeshRawWithName, &data.0),
}
}
/// Creates a `WorldMesh` from the passed-in raw mesh data.
pub fn create_with_material(mesh: Mesh, material: WorldMaterial) -> Self {
let data = Self::convert_to_mesh_raw_with_material(&mesh, material);
Self {
mesh: WorldData::create_struct(
ffi::CreateDataType::MeshRawWithMaterialAndName,
&data.0,
),
}
}
/// Creates a `WorldMesh` from GLTF data and additional buffer data.
/// Supports .gltf and .glb, and a single additional buffer file.
pub fn create_from_gltf(
debug_name: &str,
gltf_data: &[u8],
buffer_data: &[u8],
flags: GltfFlags,
) -> Self {
Self {
mesh: WorldData::create_struct(
ffi::CreateDataType::MeshGltfNamed,
&ffi::MeshGltfNamed {
debug_name_ptr: debug_name.as_ptr() as u32,
debug_name_size: debug_name.len() as u32,
gltf_data_ptr: gltf_data.as_ptr() as u32,
gltf_data_size: gltf_data.len() as u32,
buffer_data_ptr: buffer_data.as_ptr() as u32,
buffer_data_size: buffer_data.len() as u32,
flags,
},
),
}
}
/// Creates a `WorldMesh` from a GLTF resource handle and additional buffer resource handle
pub fn create_from_gltf_resource(
debug_name: &str,
gltf_resource: ResourceHandleRepr,
buffer_resource: Option<ResourceHandleRepr>,
flags: GltfFlags,
) -> Self {
Self {
mesh: WorldData::create_struct(
ffi::CreateDataType::MeshGltfResource,
&ffi::MeshGltfResource {
debug_name_ptr: debug_name.as_ptr() as u32,
debug_name_size: debug_name.len() as u32,
gltf_resource,
buffer_resource: buffer_resource.unwrap_or(ffi::INVALID_RESOURCE_HANDLE),
flags,
},
),
}
}
/// Gets some properties of the mesh, such as its internal bounding box and sphere.
pub fn get_properties(&self) -> MeshProperties {
World::get_mesh_properties(self.mesh.get_data_handle())
}
/// Gets the names of all morph target associated with the mesh.
///
/// It is recommended to store the return value instead of calling it every frame.
pub fn get_morph_target_names(&self) -> Vec<String> {
World::get_mesh_morph_target_names(self.mesh.get_data_handle())
}
/// Obtain all materials associated with the mesh.
///
/// It is recommended to store the return value instead of calling it every frame.
pub fn get_material_descs(&self) -> Vec<MaterialDesc> {
let mesh_handle = self.mesh.get_data_handle();
let count = ffi::get_mesh_material_count(mesh_handle.as_ffi());
(0..count)
.map(|i| ffi::get_mesh_material_desc(mesh_handle.as_ffi(), i))
.collect()
}
/// Obtain all materials and their name associated with the mesh.
///
/// It is recommended to store the return value instead of calling it every frame.
pub fn get_material_descs_with_names(&self) -> Vec<(Option<String>, MaterialDesc)> {
let mesh_handle = self.mesh.get_data_handle();
let count = ffi::get_mesh_material_count(mesh_handle.as_ffi());
(0..count)
.map(|i| {
let len = ffi::get_mesh_material_name(mesh_handle.as_ffi(), i, &mut []);
if len > 0 {
let mut buf: Vec<u8> = vec![0u8; len as usize];
ffi::get_mesh_material_name(mesh_handle.as_ffi(), i, &mut buf);
String::from_utf8(buf).ok()
} else {
None
}
})
.zip((0..count).map(|i| ffi::get_mesh_material_desc(mesh_handle.as_ffi(), i)))
.collect()
}
/// Get the dominant vertex colors of each mesh section and the area they occupy in vertex space
///
/// A mesh section is a part of the mesh that has its own material index.
pub fn get_dominant_colors_with_area(&self) -> Vec<(ColorRgba8, f32)> {
let mesh_handle = self.mesh.get_data_handle();
let count = ffi::v4::get_mesh_section_count(mesh_handle.as_ffi());
(0..count)
.map(|i| {
let c = ffi::v4::get_mesh_section_dominant_color(mesh_handle.as_ffi(), i);
(c.color.into(), c.area)
})
.collect()
}
/// Get the material index assigned to a mesh section
pub fn get_section_material_index(&self, section_idx: usize) -> usize {
let mesh_handle = self.mesh.get_data_handle();
ffi::v4::get_mesh_section_material_index(mesh_handle.as_ffi(), section_idx as u64) as usize
}
/// Sets a debug name of this data object. Useful for debugging memory usage and leaks.
pub fn set_debug_name(&self, name: &str) {
self.mesh.set_debug_name(name);
}
/// Gets the `DataHandle` of this mesh.
pub fn as_ffi(&self) -> ffi::DataHandle {
self.mesh.get_data_handle().as_ffi()
}
/// Adopts a raw data handle and increases its ref count.
pub fn from_ffi(handle: ffi::DataHandle) -> Self {
Self {
mesh: WorldData::from_data_handle(DataHandle::from_ffi(handle)),
}
}
/// Adopts a raw data handle and increases its ref count if it is a valid data object.
pub fn try_from_ffi(handle: ffi::DataHandle) -> Option<Self> {
let handle = DataHandle::from_ffi(handle);
World::is_valid_data(handle).then(|| Self {
mesh: WorldData::from_data_handle(handle),
})
}
/// Returns `true` if this is a valid mesh. This should always be the case unless
/// something has gone very wrong, such as the case where a user created this object from
// an invalid handle).
pub fn is_valid(&self) -> bool {
self.mesh.is_valid()
}
/// Returns this mesh as a simplified `WorldMesh` using `target_error` and `threshold` parameters.
/// `threshold` meaning what percentage (0-1) of the original primitives it should keep.
/// `target_error` is an approximate measure of the deviation from the original
/// mesh using distance normalized to 0..1 (so 1e-2f means that simplifier will
/// try to maintain the error to be below 1% of the mesh extents). Note that because of
/// topological restrictions and error bounds simplifier isn't guaranteed to reach the
/// target index count and can stop earlier.
/// `min_triangle_count` and `max_triangle_count` can be used instead
/// of threshold or in conjunction to define a minimum limit and maximum budget.
/// If this range is outside of the number of triangles for the mesh no simplification
/// will be done (target triangle count will be equal to the amount of triangles in the mesh)
pub fn simplify(
&self,
threshold: f32,
target_error: f32,
min_triangle_count: u32,
max_triangle_count: u32,
flags: MeshSimplifiedFlags,
) -> Self {
Self {
mesh: WorldData::create_struct(
ffi::CreateDataType::MeshSimplified,
&ffi::MeshSimplified {
mesh: self.mesh.get_data_handle().as_ffi(),
threshold,
target_error,
min_triangle_count,
max_triangle_count,
flags,
reserved: [0.0f32; 15],
},
),
}
}
/// Returns a new mesh simplified to `target_triangle_count`, as long as it can keep
/// the error below `max_error`. `max_error` is an approximate measure of the deviation
/// from the original mesh using distance normalized to 0..1 (so 1e-2f means that simplifier will
/// try to maintain the error to be below 1% of the mesh extents).
pub fn simplify_to_num_triangles(
&self,
target_triangle_count: u32,
max_error: f32,
flags: MeshSimplifiedFlags,
) -> Self {
self.simplify(
1.0,
max_error,
target_triangle_count,
target_triangle_count,
flags,
)
}
/// Returns a new mesh simplified as much as it can while not exceeding `target_error`.
/// `target_error` is an approximate measure of the deviation from the original mesh using
/// distance normalized to 0..1 (so 1e-2f means that simplifier will try to maintain the
/// error to be below 1% of the mesh extents).
pub fn simplify_to_error(&self, target_error: f32, flags: MeshSimplifiedFlags) -> Self {
self.simplify(1.0, target_error, 1, 1, flags)
}
}
impl ValueConverterTrait<WorldMesh> for ValueConverter {
fn into_value(v: WorldMesh) -> Value {
// Partial move of mesh (WorldData) here, will not invoke drop
<Self as ValueConverterTrait<WorldData>>::into_value(v.mesh)
}
fn from_value(v: &Value) -> WorldMesh {
WorldMesh {
mesh: <Self as ValueConverterTrait<WorldData>>::from_value(v),
}
}
}
/// Represents a material registered with the world.
#[derive(Debug, Clone, PartialEq)]
pub struct WorldMaterial {
data: WorldData,
}
#[allow(dead_code)]
impl WorldMaterial {
/// Create a material from a material description
pub fn new(desc: MaterialDesc) -> Self {
Self {
data: WorldData::create_struct(ffi::CreateDataType::WorldMaterial, &desc),
}
}
}
impl ValueConverterTrait<WorldMaterial> for ValueConverter {
fn into_value(v: WorldMaterial) -> Value {
<Self as ValueConverterTrait<WorldData>>::into_value(v.data)
}
fn from_value(v: &Value) -> WorldMaterial {
WorldMaterial {
data: <Self as ValueConverterTrait<WorldData>>::from_value(v),
}
}
}