1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
//! Executables output by a `Compiler` and related types.

use hashbrown::HashMap;
use num_traits::{Num, Pow};
use smallvec::{smallvec, SmallVec};

use core::ops;

use crate::{
    alloc::{vec, Rc, Vec},
    Backtrace, CallContext, ErrorWithBacktrace, EvalError, EvalResult, InterpretedFn,
    SpannedEvalError, TupleLenMismatchContext, Value,
};
use arithmetic_parser::{create_span_ref, BinaryOp, Grammar, LvalueLen, Span, Spanned, UnaryOp};

/// Pointer to a register or constant.
#[derive(Debug, Clone, Copy)]
pub enum Atom<T: Grammar> {
    Constant(T::Lit),
    Register(usize),
    Void,
}

pub type SpannedAtom<'a, T> = Spanned<'a, Atom<T>>;

/// Atomic operation on registers and/or constants.
#[derive(Debug, Clone)]
pub enum CompiledExpr<'a, T: Grammar> {
    Atom(Atom<T>),
    Tuple(Vec<Atom<T>>),
    Unary {
        op: UnaryOp,
        inner: SpannedAtom<'a, T>,
    },
    Binary {
        op: BinaryOp,
        lhs: SpannedAtom<'a, T>,
        rhs: SpannedAtom<'a, T>,
    },
    Function {
        name: SpannedAtom<'a, T>,
        args: Vec<SpannedAtom<'a, T>>,
    },
    DefineFunction {
        ptr: usize,
        captures: Vec<SpannedAtom<'a, T>>,
    },
}

/// Commands for a primitive register VM used to execute compiled programs.
#[derive(Debug)]
pub enum Command<'a, T: Grammar> {
    /// Create a new register and push the result of the specified computation there.
    Push(CompiledExpr<'a, T>),

    /// Destructure a tuple value. This will push `start_len` starting elements from the tuple,
    /// the middle of the tuple (as a tuple), and `end_len` ending elements from the tuple
    /// as new registers, in this order.
    Destructure {
        /// Index of the register with the value.
        source: usize,
        /// Number of starting arguments to place in separate registers.
        start_len: usize,
        /// Number of ending arguments to place in separate registers.
        end_len: usize,
        /// Acceptable length(s) of the source.
        lvalue_len: LvalueLen,
        /// Does `lvalue_len` should be checked? When destructuring arguments for functions,
        /// this check was performed previously.
        unchecked: bool,
    },

    /// Copies the source register into the destination. The destination register must exist.
    Copy { source: usize, destination: usize },

    /// Annotates a register as containing the specified variable.
    Annotate { register: usize, name: &'a str },

    /// Signals that the following commands are executed in the inner scope.
    StartInnerScope,
    /// Signals that the following commands are executed in the global scope.
    EndInnerScope,
    /// Signals to truncate registers to the specified number.
    TruncateRegisters(usize),
}

type SpannedCommand<'a, T> = Spanned<'a, Command<'a, T>>;

#[derive(Debug)]
pub(super) struct ExecutableFn<'a, T: Grammar> {
    pub inner: Executable<'a, T>,
    pub def_span: Span<'a>,
    pub arg_count: LvalueLen,
}

#[derive(Debug)]
pub(super) struct Executable<'a, T: Grammar> {
    commands: Vec<SpannedCommand<'a, T>>,
    child_fns: Vec<Rc<ExecutableFn<'a, T>>>,
    // Hint how many registers the executable requires.
    register_capacity: usize,
}

impl<'a, T: Grammar> Executable<'a, T> {
    pub fn new() -> Self {
        Self {
            commands: vec![],
            child_fns: vec![],
            register_capacity: 0,
        }
    }

    pub fn push_command(&mut self, command: SpannedCommand<'a, T>) {
        self.commands.push(command);
    }

    pub fn push_child_fn(&mut self, child_fn: ExecutableFn<'a, T>) -> usize {
        let fn_ptr = self.child_fns.len();
        self.child_fns.push(Rc::new(child_fn));
        fn_ptr
    }

    pub fn finalize_function(&mut self, register_count: usize) {
        // We check number of arguments in `InterpretedFn::evaluate()` in order to provide
        // a more precise error.
        match &mut self.commands[0].extra {
            Command::Destructure { unchecked, .. } => {
                *unchecked = true;
            }
            _ => unreachable!(),
        }
        self.register_capacity = register_count;
    }

    pub fn finalize_block(&mut self, register_count: usize) {
        self.register_capacity = register_count;
    }
}

impl<'a, T> Executable<'a, T>
where
    T: Grammar,
    T::Lit: Num + ops::Neg<Output = T::Lit> + Pow<T::Lit, Output = T::Lit>,
{
    pub(super) fn call_function(
        &self,
        captures: Vec<Value<'a, T>>,
        args: Vec<Value<'a, T>>,
        ctx: &mut CallContext<'_, 'a>,
    ) -> EvalResult<'a, T> {
        let mut registers = SmallVec::from(captures);
        registers.push(Value::Tuple(args));
        let mut env = Env {
            registers,
            ..Env::new()
        };
        env.execute(self, ctx.backtrace())
    }
}

type Registers<'a, T> = SmallVec<[Value<'a, T>; 16]>;

#[derive(Debug)]
pub(super) struct Env<'a, T: Grammar> {
    registers: Registers<'a, T>,
    // Maps variables to registers. Variables are mapped only from the global scope;
    // thus, we don't need to remove them on error in an inner scope.
    vars: HashMap<&'a str, usize>,
    // Marks the start of a first inner scope currently being evaluated. This is used
    // to quickly remove registers from the inner scopes on error.
    inner_scope_start: Option<usize>,
}

impl<T: Grammar> Clone for Env<'_, T> {
    fn clone(&self) -> Self {
        Self {
            registers: self.registers.clone(),
            vars: self.vars.clone(),
            inner_scope_start: self.inner_scope_start,
        }
    }
}

impl<'a, T: Grammar> Env<'a, T> {
    pub fn new() -> Self {
        Self {
            registers: smallvec![],
            vars: HashMap::new(),
            inner_scope_start: None,
        }
    }

    pub fn get_var(&self, name: &str) -> Option<&Value<'a, T>> {
        let register = *self.vars.get(name)?;
        Some(&self.registers[register])
    }

    pub fn variables(&self) -> impl Iterator<Item = (&'a str, &Value<'a, T>)> + '_ {
        self.vars
            .iter()
            .map(move |(name, register)| (*name, &self.registers[*register]))
    }

    pub fn variables_map(&self) -> HashMap<&'a str, usize> {
        self.vars.clone()
    }

    pub fn register_count(&self) -> usize {
        self.registers.len()
    }

    fn set_var(&mut self, name: &str, value: Value<'a, T>) {
        let register = *self.vars.get(name).unwrap_or_else(|| {
            panic!("Variable `{}` is not defined", name);
        });
        self.registers[register] = value;
    }

    /// Allocates a new register with the specified name. If the name was previously assigned,
    /// the name association is updated, but the old register itself remains intact.
    pub fn push_var(&mut self, name: &'a str, value: Value<'a, T>) {
        let register = self.registers.len();
        self.registers.push(value);
        self.vars.insert(name, register);
    }

    /// Retains only registers corresponding to named variables.
    pub fn compress(&mut self) {
        let mut registers = SmallVec::with_capacity(self.vars.len());
        for (i, register) in self.vars.values_mut().enumerate() {
            registers.push(self.registers[*register].clone());
            *register = i;
        }
        self.registers = registers;
    }
}

impl<'a, T> Env<'a, T>
where
    T: Grammar,
    T::Lit: Num + ops::Neg<Output = T::Lit> + Pow<T::Lit, Output = T::Lit>,
{
    pub fn execute(
        &mut self,
        executable: &Executable<'a, T>,
        backtrace: Option<&mut Backtrace<'a>>,
    ) -> EvalResult<'a, T> {
        self.execute_inner(executable, backtrace).map_err(|err| {
            if let Some(scope_start) = self.inner_scope_start.take() {
                self.registers.truncate(scope_start);
            }
            err
        })
    }

    fn execute_inner(
        &mut self,
        executable: &Executable<'a, T>,
        mut backtrace: Option<&mut Backtrace<'a>>,
    ) -> EvalResult<'a, T> {
        if let Some(additional_capacity) = executable
            .register_capacity
            .checked_sub(self.registers.len())
        {
            self.registers.reserve(additional_capacity);
        }

        for command in &executable.commands {
            match &command.extra {
                Command::Push(expr) => {
                    let expr_span = create_span_ref(command, ());
                    let expr_value =
                        self.execute_expr(expr_span, expr, executable, backtrace.as_deref_mut())?;
                    self.registers.push(expr_value);
                }

                Command::Copy {
                    source,
                    destination,
                } => {
                    self.registers[*destination] = self.registers[*source].clone();
                }

                Command::TruncateRegisters(size) => {
                    self.registers.truncate(*size);
                }

                Command::Destructure {
                    source,
                    start_len,
                    end_len,
                    lvalue_len,
                    unchecked,
                } => {
                    let source = self.registers[*source].clone();
                    if let Value::Tuple(mut elements) = source {
                        if !*unchecked && !lvalue_len.matches(elements.len()) {
                            let err = EvalError::TupleLenMismatch {
                                lhs: *lvalue_len,
                                rhs: elements.len(),
                                context: TupleLenMismatchContext::Assignment,
                            };
                            return Err(SpannedEvalError::new(command, err));
                        }

                        let mut tail = elements.split_off(*start_len);
                        self.registers.extend(elements);
                        let end = tail.split_off(tail.len() - *end_len);
                        self.registers.push(Value::Tuple(tail));
                        self.registers.extend(end);
                    } else {
                        let err = EvalError::CannotDestructure;
                        return Err(SpannedEvalError::new(command, err));
                    }
                }

                Command::Annotate { register, name } => {
                    self.vars.insert(*name, *register);
                }

                Command::StartInnerScope => {
                    debug_assert!(self.inner_scope_start.is_none());
                    self.inner_scope_start = Some(self.registers.len());
                }
                Command::EndInnerScope => {
                    debug_assert!(self.inner_scope_start.is_some());
                    self.inner_scope_start = None;
                }
            }
        }

        Ok(self.registers.pop().unwrap_or_else(Value::void))
    }

    fn execute_expr(
        &self,
        span: Span<'a>,
        expr: &CompiledExpr<'a, T>,
        executable: &Executable<'a, T>,
        mut backtrace: Option<&mut Backtrace<'a>>,
    ) -> EvalResult<'a, T> {
        match expr {
            CompiledExpr::Atom(atom) => Ok(self.resolve_atom(atom)),
            CompiledExpr::Tuple(atoms) => {
                let values = atoms.iter().map(|atom| self.resolve_atom(atom)).collect();
                Ok(Value::Tuple(values))
            }

            CompiledExpr::Unary { op, inner } => {
                let inner_value = self.resolve_atom(&inner.extra);
                match op {
                    UnaryOp::Neg => inner_value.try_neg(),
                    UnaryOp::Not => inner_value.try_not(),
                }
                .map_err(|err| SpannedEvalError::new(&span, err))
            }

            CompiledExpr::Binary { op, lhs, rhs } => {
                let lhs_value = create_span_ref(lhs, self.resolve_atom(&lhs.extra));
                let rhs_value = create_span_ref(rhs, self.resolve_atom(&rhs.extra));
                match op {
                    BinaryOp::Add => Value::try_add(span, lhs_value, rhs_value),
                    BinaryOp::Sub => Value::try_sub(span, lhs_value, rhs_value),
                    BinaryOp::Mul => Value::try_mul(span, lhs_value, rhs_value),
                    BinaryOp::Div => Value::try_div(span, lhs_value, rhs_value),
                    BinaryOp::Power => Value::try_pow(span, lhs_value, rhs_value),

                    BinaryOp::Eq => Ok(Value::Bool(lhs_value.extra == rhs_value.extra)),
                    BinaryOp::NotEq => Ok(Value::Bool(lhs_value.extra != rhs_value.extra)),

                    BinaryOp::And => Value::try_and(&lhs_value, &rhs_value),
                    BinaryOp::Or => Value::try_or(&lhs_value, &rhs_value),
                }
            }

            CompiledExpr::Function { name, args } => {
                if let Value::Function(function) = self.resolve_atom(&name.extra) {
                    let arg_values = args
                        .iter()
                        .map(|arg| create_span_ref(arg, self.resolve_atom(&arg.extra)))
                        .collect();

                    if let Some(backtrace) = backtrace.as_deref_mut() {
                        backtrace.push_call(name.fragment, function.def_span(), span);
                    }
                    let mut context =
                        CallContext::new(create_span_ref(name, ()), span, backtrace.as_deref_mut());

                    function.evaluate(arg_values, &mut context).map(|value| {
                        if let Some(backtrace) = backtrace {
                            backtrace.pop_call();
                        }
                        value
                    })
                } else {
                    Err(SpannedEvalError::new(&span, EvalError::CannotCall))
                }
            }

            CompiledExpr::DefineFunction { ptr, captures } => {
                let fn_executable = executable.child_fns[*ptr].clone();
                let captured_values = captures
                    .iter()
                    .map(|capture| self.resolve_atom(&capture.extra))
                    .collect();
                let capture_spans = captures
                    .iter()
                    .map(|capture| create_span_ref(capture, ()))
                    .collect();

                let function = InterpretedFn::new(fn_executable, captured_values, capture_spans);
                Ok(Value::interpreted_fn(function))
            }
        }
    }

    #[inline]
    fn resolve_atom(&self, atom: &Atom<T>) -> Value<'a, T> {
        match atom {
            Atom::Register(index) => self.registers[*index].clone(),
            Atom::Constant(value) => Value::Number(value.clone()),
            Atom::Void => Value::void(),
        }
    }
}

/// Executable module together with its imports.
///
/// # Examples
///
/// ```
/// use arithmetic_parser::{grammars::F32Grammar, GrammarExt, Span};
/// use arithmetic_eval::{fns, Interpreter, Value};
/// # use std::{collections::HashSet, f32, iter::FromIterator};
///
/// let mut interpreter = Interpreter::new();
/// interpreter
///     .insert_native_fn(
///         "max",
///         fns::Binary::new(|x, y| if x > y { x } else { y }),
///     )
///     .insert_native_fn("fold", fns::Fold)
///     .insert_var("INF", Value::Number(f32::INFINITY))
///     .insert_var("xs", Value::Tuple(vec![]));
///
/// let module = "xs.fold(-INF, max)";
/// let module = F32Grammar::parse_statements(Span::new(module)).unwrap();
/// let mut module = interpreter.compile(&module).unwrap();
///
/// // With the original imports, the returned value is `-INF`.
/// assert_eq!(module.run().unwrap(), Value::Number(f32::NEG_INFINITY));
///
/// // Imports can be changed. Let's check that `xs` is indeed an import.
/// let imports: HashSet<_> = module.imports().map(|(name, _)| name).collect();
/// assert_eq!(imports, HashSet::from_iter(vec!["max", "fold", "xs", "INF"]));
///
/// // Change the `xs` import and run the module again.
/// let array = [1.0, -3.0, 2.0, 0.5].iter().copied().map(Value::Number).collect();
/// module.set_import("xs", Value::Tuple(array));
/// assert_eq!(module.run().unwrap(), Value::Number(2.0));
/// ```
#[derive(Debug)]
pub struct ExecutableModule<'a, T: Grammar> {
    inner: Executable<'a, T>,
    imports: Env<'a, T>,
}

impl<'a, T: Grammar> ExecutableModule<'a, T> {
    pub(super) fn new(inner: Executable<'a, T>, imports: Env<'a, T>) -> Self {
        Self { inner, imports }
    }

    /// Sets the value of an imported variable.
    ///
    /// # Panics
    ///
    /// Panics if the variable with the specified name is not an import.
    pub fn set_import(&mut self, name: &str, value: Value<'a, T>) -> &mut Self {
        self.imports.set_var(name, value);
        self
    }

    /// Enumerates imports of this module together with their current values.
    pub fn imports(&self) -> impl Iterator<Item = (&'a str, &Value<'a, T>)> + '_ {
        self.imports.variables()
    }

    pub(super) fn inner(&self) -> &Executable<'a, T> {
        &self.inner
    }
}

impl<'a, T: Grammar> ExecutableModule<'a, T>
where
    T::Lit: Num + ops::Neg<Output = T::Lit> + Pow<T::Lit, Output = T::Lit>,
{
    /// Runs the module with the current values of imports.
    pub fn run(&self) -> Result<Value<'a, T>, ErrorWithBacktrace<'a>> {
        let mut backtrace = Backtrace::default();
        self.imports
            .clone()
            .execute(&self.inner, Some(&mut backtrace))
            .map_err(|err| ErrorWithBacktrace::new(err, backtrace))
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::compiler::Compiler;

    use arithmetic_parser::{grammars::F32Grammar, GrammarExt};

    #[test]
    fn iterative_evaluation() {
        let mut env = Env::new();
        env.push_var("x", Value::<F32Grammar>::Number(5.0));

        let block = F32Grammar::parse_statements(Span::new("x")).unwrap();
        let mut module = Compiler::compile_module(&env, &block, true).unwrap();
        assert_eq!(module.inner.register_capacity, 2);
        assert_eq!(module.inner.commands.len(), 1); // push `x` from r0 to r1
        module.imports = env;
        let value = module.run().unwrap();
        assert_eq!(value, Value::Number(5.0));
    }

    #[test]
    fn env_compression() {
        let mut env = Env::new();
        env.push_var("x", Value::<F32Grammar>::Number(5.0));

        let block = "y = x + 2 * (x + 1) + 1; y";
        let block = F32Grammar::parse_statements(Span::new(block)).unwrap();
        let module = Compiler::compile_module(&env, &block, true).unwrap();
        let value = env.execute(&module.inner, None).unwrap();
        assert_eq!(value, Value::Number(18.0));

        assert!(env.registers.len() > 2);
        env.compress();
        assert_eq!(env.registers.len(), 2);
        assert_eq!(env.vars.len(), 2);
        assert!(env.vars.contains_key("x"));
        assert!(env.vars.contains_key("y"));
    }
}