1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
//! The [`Encoder`] half of the arithmetic coding library.

use std::{io, ops::Range};

use bitstream_io::BitWrite;

use crate::{BitStore, Error, Model};

// this algorithm is derived from this article - https://marknelson.us/posts/2014/10/19/data-compression-with-arithmetic-coding.html

/// An arithmetic encoder
///
/// An arithmetic decoder converts a stream of symbols into a stream of bits,
/// using a predictive [`Model`].
#[derive(Debug)]
pub struct Encoder<'a, M, W>
where
    M: Model,
    W: BitWrite,
{
    model: M,
    state: State<'a, M::B, W>,
}

impl<'a, M, W> Encoder<'a, M, W>
where
    M: Model,
    W: BitWrite,
{
    /// Construct a new [`Encoder`].
    ///
    /// The 'precision' of the encoder is maximised, based on the number of bits
    /// needed to represent the [`Model::denominator`]. 'precision' bits is
    /// equal to [`BitStore::BITS`] - [`Model::denominator`] bits. If you need
    /// to set the precision manually, use [`Encoder::with_precision`].
    ///
    /// # Panics
    ///
    /// The calculation of the number of bits used for 'precision' is subject to
    /// the following constraints:
    ///
    /// - The total available bits is [`BitStore::BITS`]
    /// - The precision must use at least 2 more bits than that needed to
    ///   represent [`Model::denominator`]
    ///
    /// If these constraints cannot be satisfied this method will panic in debug
    /// builds
    pub fn new(model: M, bitwriter: &'a mut W) -> Self {
        let frequency_bits = model.max_denominator().log2() + 1;
        let precision = M::B::BITS - frequency_bits;
        Self::with_precision(model, bitwriter, precision)
    }

    /// Construct a new [`Encoder`] with a custom precision.
    ///
    /// # Panics
    ///
    /// The calculation of the number of bits used for 'precision' is subject to
    /// the following constraints:
    ///
    /// - The total available bits is [`BitStore::BITS`]
    /// - The precision must use at least 2 more bits than that needed to
    ///   represent [`Model::denominator`]
    ///
    /// If these constraints cannot be satisfied this method will panic in debug
    /// builds
    pub fn with_precision(model: M, bitwriter: &'a mut W, precision: u32) -> Self {
        let frequency_bits = model.max_denominator().log2() + 1;
        debug_assert!(
            (precision >= (frequency_bits + 2)),
            "not enough bits of precision to prevent overflow/underflow",
        );
        debug_assert!(
            (frequency_bits + precision) <= M::B::BITS,
            "not enough bits in BitStore to support the required precision",
        );

        Self {
            model,
            state: State::new(precision, bitwriter),
        }
    }

    /// todo
    pub const fn with_state(state: State<'a, M::B, W>, model: M) -> Self {
        Self { model, state }
    }

    /// Encode a stream of symbols into the provided output.
    ///
    /// This method will encode all the symbols in the iterator, followed by EOF
    /// (`None`), and then call [`Encoder::flush`].
    ///
    /// # Errors
    ///
    /// This method can fail if the underlying [`BitWrite`] cannot be written
    /// to.
    pub fn encode_all(
        &mut self,
        symbols: impl IntoIterator<Item = M::Symbol>,
    ) -> Result<(), Error<M::ValueError>> {
        for symbol in symbols {
            self.encode(Some(&symbol))?;
        }
        self.encode(None)?;
        self.flush()?;
        Ok(())
    }

    /// Encode a symbol into the provided output.
    ///
    /// When you finish encoding symbols, you must manually encode an EOF symbol
    /// by calling [`Encoder::encode`] with `None`.
    ///
    /// The internal buffer must be manually flushed using [`Encoder::flush`].
    ///
    /// # Errors
    ///
    /// This method can fail if the underlying [`BitWrite`] cannot be written
    /// to.
    pub fn encode(&mut self, symbol: Option<&M::Symbol>) -> Result<(), Error<M::ValueError>> {
        let p = self.model.probability(symbol).map_err(Error::ValueError)?;
        let denominator = self.model.denominator();
        debug_assert!(
            denominator <= self.model.max_denominator(),
            "denominator is greater than maximum!"
        );

        self.state.scale(p, denominator)?;
        self.model.update(symbol);

        Ok(())
    }

    /// Flush any pending bits from the buffer
    ///
    /// This method must be called when you finish writing symbols to a stream
    /// of bits. This is called automatically when you use
    /// [`Encoder::encode_all`].
    ///
    /// # Errors
    ///
    /// This method can fail if the underlying [`BitWrite`] cannot be written
    /// to.
    pub fn flush(&mut self) -> io::Result<()> {
        self.state.flush()
    }

    /// todo
    pub fn into_inner(self) -> (M, State<'a, M::B, W>) {
        (self.model, self.state)
    }

    /// Reuse the internal state of the Encoder with a new model.
    ///
    /// Allows for chaining multiple sequences of symbols into a single stream
    /// of bits
    pub fn chain<X>(self, model: X) -> Encoder<'a, X, W>
    where
        X: Model<B = M::B>,
    {
        Encoder {
            model,
            state: self.state,
        }
    }
}

/// A convenience struct which stores the internal state of an [`Encoder`].
#[derive(Debug)]
pub struct State<'a, B, W>
where
    B: BitStore,
    W: BitWrite,
{
    precision: u32,
    low: B,
    high: B,
    pending: u32,
    output: &'a mut W,
}

impl<'a, B, W> State<'a, B, W>
where
    B: BitStore,
    W: BitWrite,
{
    /// todo
    pub fn new(precision: u32, output: &'a mut W) -> Self {
        let low = B::ZERO;
        let high = B::ONE << precision;
        let pending = 0;

        Self {
            precision,
            low,
            high,
            pending,
            output,
        }
    }

    fn three_quarter(&self) -> B {
        self.half() + self.quarter()
    }

    fn half(&self) -> B {
        B::ONE << (self.precision - 1)
    }

    fn quarter(&self) -> B {
        B::ONE << (self.precision - 2)
    }

    fn scale(&mut self, p: Range<B>, denominator: B) -> io::Result<()> {
        let range = self.high - self.low + B::ONE;

        self.high = self.low + (range * p.end) / denominator - B::ONE;
        self.low += (range * p.start) / denominator;

        self.normalise()
    }

    fn normalise(&mut self) -> io::Result<()> {
        while self.high < self.half() || self.low >= self.half() {
            if self.high < self.half() {
                self.emit(false)?;
                self.high <<= 1;
                self.low <<= 1;
            } else {
                // self.low >= self.half()
                self.emit(true)?;
                self.low = (self.low - self.half()) << 1;
                self.high = (self.high - self.half()) << 1;
            }
        }

        while self.low >= self.quarter() && self.high < (self.three_quarter()) {
            self.pending += 1;
            self.low = (self.low - self.quarter()) << 1;
            self.high = (self.high - self.quarter()) << 1;
        }

        Ok(())
    }

    fn emit(&mut self, bit: bool) -> io::Result<()> {
        self.output.write_bit(bit)?;
        for _ in 0..self.pending {
            self.output.write_bit(!bit)?;
        }
        self.pending = 0;
        Ok(())
    }

    /// todo
    pub fn flush(&mut self) -> io::Result<()> {
        self.pending += 1;
        if self.low <= self.quarter() {
            self.emit(false)?;
        } else {
            self.emit(true)?;
        }

        Ok(())
    }
}