1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
//! The [`Decoder`] half of the arithmetic coding library.

use std::{io, ops::Range};

use bitstream_io::BitRead;

use crate::{BitStore, Model};

// this algorithm is derived from this article - https://marknelson.us/posts/2014/10/19/data-compression-with-arithmetic-coding.html

/// An arithmetic decoder
///
/// An arithmetic decoder converts a stream of bytes into a stream of some
/// output symbol, using a predictive [`Model`].
#[derive(Debug)]
pub struct Decoder<M, R>
where
    M: Model,
    R: BitRead,
{
    model: M,
    state: State<M::B, R>,
}

trait BitReadExt {
    fn next_bit(&mut self) -> io::Result<Option<bool>>;
}

impl<R: BitRead> BitReadExt for R {
    fn next_bit(&mut self) -> io::Result<Option<bool>> {
        match self.read_bit() {
            Ok(bit) => Ok(Some(bit)),
            Err(e) if e.kind() == io::ErrorKind::UnexpectedEof => Ok(None),
            Err(e) => Err(e),
        }
    }
}

impl<M, R> Decoder<M, R>
where
    M: Model,
    R: BitRead,
{
    /// Construct a new [`Decoder`]
    ///
    /// The 'precision' of the encoder is maximised, based on the number of bits
    /// needed to represent the [`Model::denominator`]. 'precision' bits is
    /// equal to [`u32::BITS`] - [`Model::denominator`] bits.
    ///
    /// # Panics
    ///
    /// The calculation of the number of bits used for 'precision' is subject to
    /// the following constraints:
    ///
    /// - The total available bits is [`u32::BITS`]
    /// - The precision must use at least 2 more bits than that needed to
    ///   represent [`Model::denominator`]
    ///
    /// If these constraints cannot be satisfied this method will panic in debug
    /// builds
    pub fn new(model: M, input: R) -> Self {
        let frequency_bits = model.max_denominator().log2() + 1;
        let precision = M::B::BITS - frequency_bits;

        Self::with_precision(model, input, precision)
    }

    /// Construct a new [`Decoder`] with a custom precision
    ///
    /// # Panics
    ///
    /// The calculation of the number of bits used for 'precision' is subject to
    /// the following constraints:
    ///
    /// - The total available bits is [`BitStore::BITS`]
    /// - The precision must use at least 2 more bits than that needed to
    ///   represent [`Model::denominator`]
    ///
    /// If these constraints cannot be satisfied this method will panic in debug
    /// builds
    pub fn with_precision(model: M, input: R, precision: u32) -> Self {
        let frequency_bits = model.max_denominator().log2() + 1;
        debug_assert!(
            (precision >= (frequency_bits + 2)),
            "not enough bits of precision to prevent overflow/underflow",
        );
        debug_assert!(
            (frequency_bits + precision) <= M::B::BITS,
            "not enough bits in BitStore to support the required precision",
        );

        let state = State::new(precision, input);

        Self { model, state }
    }

    /// todo
    pub const fn with_state(state: State<M::B, R>, model: M) -> Self {
        Self { model, state }
    }

    /// Return an iterator over the decoded symbols.
    ///
    /// The iterator will continue returning symbols until EOF is reached
    pub fn decode_all(&mut self) -> DecodeIter<M, R> {
        DecodeIter { decoder: self }
    }

    /// Read the next symbol from the stream of bits
    ///
    /// This method will return `Ok(None)` when EOF is reached.
    ///
    /// # Errors
    ///
    /// This method can fail if the underlying [`BitRead`] cannot be read from.
    pub fn decode(&mut self) -> io::Result<Option<M::Symbol>> {
        self.state.initialise()?;

        let denominator = self.model.denominator();
        debug_assert!(
            denominator <= self.model.max_denominator(),
            "denominator is greater than maximum!"
        );
        let value = self.state.value(denominator);
        let symbol = self.model.symbol(value);

        let p = self
            .model
            .probability(symbol.as_ref())
            .expect("this should not be able to fail. Check the implementation of the model.");

        self.state.scale(p, denominator)?;
        self.model.update(symbol.as_ref());

        Ok(symbol)
    }

    /// Reuse the internal state of the Decoder with a new model.
    ///
    /// Allows for chaining multiple sequences of symbols from a single stream
    /// of bits
    pub fn chain<X>(self, model: X) -> Decoder<X, R>
    where
        X: Model<B = M::B>,
    {
        Decoder {
            model,
            state: self.state,
        }
    }

    /// todo
    pub fn into_inner(self) -> (M, State<M::B, R>) {
        (self.model, self.state)
    }
}

/// The iterator returned by the [`Model::decode_all`] method
#[allow(missing_debug_implementations)]
pub struct DecodeIter<'a, M, R>
where
    M: Model,
    R: BitRead,
{
    decoder: &'a mut Decoder<M, R>,
}

impl<'a, M, R> Iterator for DecodeIter<'a, M, R>
where
    M: Model,
    R: BitRead,
{
    type Item = io::Result<M::Symbol>;

    fn next(&mut self) -> Option<Self::Item> {
        self.decoder.decode().transpose()
    }
}

/// A convenience struct which stores the internal state of an [`Decoder`].
#[derive(Debug)]
pub struct State<B, R>
where
    B: BitStore,
    R: BitRead,
{
    precision: u32,
    low: B,
    high: B,
    input: R,
    x: B,
    uninitialised: bool,
}

impl<B, R> State<B, R>
where
    B: BitStore,
    R: BitRead,
{
    /// todo
    pub fn new(precision: u32, input: R) -> Self {
        let low = B::ZERO;
        let high = B::ONE << precision;
        let x = B::ZERO;

        Self {
            precision,
            low,
            high,
            input,
            x,
            uninitialised: true,
        }
    }

    fn half(&self) -> B {
        B::ONE << (self.precision - 1)
    }

    fn quarter(&self) -> B {
        B::ONE << (self.precision - 2)
    }

    fn three_quarter(&self) -> B {
        self.half() + self.quarter()
    }

    fn normalise(&mut self) -> io::Result<()> {
        while self.high < self.half() || self.low >= self.half() {
            if self.high < self.half() {
                self.high <<= 1;
                self.low <<= 1;
                self.x <<= 1;
            } else {
                // self.low >= self.half()
                self.low = (self.low - self.half()) << 1;
                self.high = (self.high - self.half()) << 1;
                self.x = (self.x - self.half()) << 1;
            }

            match self.input.next_bit()? {
                Some(true) => {
                    self.x += B::ONE;
                }
                Some(false) | None => (),
            }
        }

        while self.low >= self.quarter() && self.high < (self.three_quarter()) {
            self.low = (self.low - self.quarter()) << 1;
            self.high = (self.high - self.quarter()) << 1;
            self.x = (self.x - self.quarter()) << 1;

            match self.input.next_bit()? {
                Some(true) => {
                    self.x += B::ONE;
                }
                Some(false) | None => (),
            }
        }

        Ok(())
    }

    fn scale(&mut self, p: Range<B>, denominator: B) -> io::Result<()> {
        let range = self.high - self.low + B::ONE;

        self.high = self.low + (range * p.end) / denominator - B::ONE;
        self.low += (range * p.start) / denominator;

        self.normalise()
    }

    fn value(&self, denominator: B) -> B {
        let range = self.high - self.low + B::ONE;
        ((self.x - self.low + B::ONE) * denominator - B::ONE) / range
    }

    fn fill(&mut self) -> io::Result<()> {
        for _ in 0..self.precision {
            self.x <<= 1;
            match self.input.next_bit()? {
                Some(true) => {
                    self.x += B::ONE;
                }
                Some(false) | None => (),
            }
        }
        Ok(())
    }

    fn initialise(&mut self) -> io::Result<()> {
        if self.uninitialised {
            self.fill()?;
            self.uninitialised = false;
        }
        Ok(())
    }
}