1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
use std::io;
use bitstream_io::BitWrite;
use crate::{BitStore, Error, Model};
// this algorithm is derived from this article - https://marknelson.us/posts/2014/10/19/data-compression-with-arithmetic-coding.html
/// An arithmetic encoder
///
/// An arithmetic decoder converts a stream of symbols into a stream of bits,
/// using a predictive [`Model`].
#[derive(Debug)]
pub struct Encoder<'a, M, W>
where
M: Model,
W: BitWrite,
{
model: M,
precision: u32,
low: M::B,
high: M::B,
pending: usize,
output: &'a mut W,
}
impl<'a, M, W> Encoder<'a, M, W>
where
M: Model,
W: BitWrite,
{
/// Construct a new [`Encoder`].
///
/// The 'precision' of the encoder is maximised, based on the number of bits
/// needed to represent the [`Model::denominator`]. 'precision' bits is
/// equal to [`BitStore::BITS`] - [`Model::denominator`] bits. If you need
/// to set the precision manually, use [`Encoder::with_precision`].
///
/// # Panics
///
/// The calculation of the number of bits used for 'precision' is subject to
/// the following constraints:
///
/// - The total available bits is [`BitStore::BITS`]
/// - The precision must use at least 2 more bits than that needed to
/// represent [`Model::denominator`]
///
/// If these constraints cannot be satisfied this method will panic in debug
/// builds
pub fn new(model: M, bitwriter: &'a mut W) -> Self {
let frequency_bits = model.max_denominator().log2() + 1;
let precision = M::B::BITS - frequency_bits;
Self::with_precision(model, bitwriter, precision)
}
/// Construct a new [`Encoder`] with a custom precision.
///
/// # Panics
///
/// The calculation of the number of bits used for 'precision' is subject to
/// the following constraints:
///
/// - The total available bits is [`BitStore::BITS`]
/// - The precision must use at least 2 more bits than that needed to
/// represent [`Model::denominator`]
///
/// If these constraints cannot be satisfied this method will panic in debug
/// builds
pub fn with_precision(model: M, bitwriter: &'a mut W, precision: u32) -> Self {
let frequency_bits = model.max_denominator().log2() + 1;
debug_assert!(
(precision >= (frequency_bits + 2)),
"not enough bits of precision to prevent overflow/underflow",
);
debug_assert!(
(frequency_bits + precision) <= M::B::BITS,
"not enough bits in BitStore to support the required precision",
);
let low = M::B::ZERO;
let high = M::B::ONE << precision;
let pending = 0;
Self {
model,
precision,
low,
high,
pending,
output: bitwriter,
}
}
/// Encode a stream of symbols into the provided output.
///
/// This method will encode all the symbols in the iterator, followed by EOF
/// (`None`), and then call [`Encoder::flush`].
///
/// # Errors
///
/// This method can fail if the underlying [`BitWrite`] cannot be written
/// to.
pub fn encode_all(
&mut self,
symbols: impl IntoIterator<Item = M::Symbol>,
) -> Result<(), Error<M::ValueError>> {
for symbol in symbols {
self.encode(Some(&symbol))?;
}
self.encode(None)?;
self.flush()?;
Ok(())
}
fn three_quarter(&self) -> M::B {
self.half() + self.quarter()
}
fn half(&self) -> M::B {
M::B::ONE << (self.precision - 1)
}
fn quarter(&self) -> M::B {
M::B::ONE << (self.precision - 2)
}
/// Encode a symbol into the provided output.
///
/// When you finish encoding symbols, you must manually encode an EOF symbol
/// by calling [`Encoder::encode`] with `None`.
///
/// The internal buffer must be manually flushed using [`Encoder::flush`].
///
/// # Errors
///
/// This method can fail if the underlying [`BitWrite`] cannot be written
/// to.
pub fn encode(&mut self, symbol: Option<&M::Symbol>) -> Result<(), Error<M::ValueError>> {
let range = self.high - self.low + M::B::ONE;
let p = self.model.probability(symbol).map_err(Error::ValueError)?;
let denominator = self.model.denominator();
debug_assert!(
denominator <= self.model.max_denominator(),
"denominator is greater than maximum!"
);
self.high = self.low + (range * p.end) / denominator - M::B::ONE;
self.low += (range * p.start) / denominator;
self.model.update(symbol);
self.normalise()?;
Ok(())
}
fn normalise(&mut self) -> io::Result<()> {
while self.high < self.half() || self.low >= self.half() {
if self.high < self.half() {
self.emit(false)?;
self.high <<= 1;
self.low <<= 1;
} else {
// self.low >= self.half()
self.emit(true)?;
self.low = (self.low - self.half()) << 1;
self.high = (self.high - self.half()) << 1;
}
}
while self.low >= self.quarter() && self.high < (self.three_quarter()) {
self.pending += 1;
self.low = (self.low - self.quarter()) << 1;
self.high = (self.high - self.quarter()) << 1;
}
Ok(())
}
fn emit(&mut self, bit: bool) -> io::Result<()> {
self.output.write_bit(bit)?;
for _ in 0..self.pending {
self.output.write_bit(!bit)?;
}
self.pending = 0;
Ok(())
}
/// Flush any pending bits from the buffer
///
/// This method must be called when you finish writing symbols to a stream
/// of bits. This is called automatically when you use
/// [`Encoder::encode_all`].
///
/// # Errors
///
/// This method can fail if the underlying [`BitWrite`] cannot be written
/// to.
pub fn flush(&mut self) -> io::Result<()> {
self.pending += 1;
if self.low <= self.quarter() {
self.emit(false)?;
} else {
self.emit(true)?;
}
Ok(())
}
/// Reuse the internal state of the Encoder with a new model.
///
/// Allows for chaining multiple sequences of symbols into a single stream
/// of bits
pub fn chain<X>(self, model: X) -> Encoder<'a, X, W>
where
X: Model<B = M::B>,
{
Encoder {
model,
precision: self.precision,
low: self.low,
high: self.high,
pending: self.pending,
output: self.output,
}
}
}