pub struct Newton<F> { /* private fields */ }
Expand description
§Newton’s method
Newton’s method iteratively finds the stationary points of a function f by using a second order approximation of f at the current point.
The stepsize gamma
can be adjusted with the with_gamma
method. It
must be in (0, 1])
and defaults to 1
.
§Requirements on the optimization problem
The optimization problem is required to implement Gradient
and Hessian
.
§Reference
Jorge Nocedal and Stephen J. Wright (2006). Numerical Optimization. Springer. ISBN 0-387-30303-0.
Implementations§
Trait Implementations§
source§impl<F> Default for Newton<F>where
F: ArgminFloat,
impl<F> Default for Newton<F>where
F: ArgminFloat,
source§impl<'de, F> Deserialize<'de> for Newton<F>where
F: Deserialize<'de>,
impl<'de, F> Deserialize<'de> for Newton<F>where
F: Deserialize<'de>,
source§fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
Deserialize this value from the given Serde deserializer. Read more
source§impl<O, P, G, H, F> Solver<O, IterState<P, G, (), H, (), F>> for Newton<F>where
O: Gradient<Param = P, Gradient = G> + Hessian<Param = P, Hessian = H>,
P: Clone + ArgminScaledSub<P, F, P>,
H: ArgminInv<H> + ArgminDot<G, P>,
F: ArgminFloat,
impl<O, P, G, H, F> Solver<O, IterState<P, G, (), H, (), F>> for Newton<F>where
O: Gradient<Param = P, Gradient = G> + Hessian<Param = P, Hessian = H>,
P: Clone + ArgminScaledSub<P, F, P>,
H: ArgminInv<H> + ArgminDot<G, P>,
F: ArgminFloat,
source§fn next_iter(
&mut self,
problem: &mut Problem<O>,
state: IterState<P, G, (), H, (), F>
) -> Result<(IterState<P, G, (), H, (), F>, Option<KV>), Error>
fn next_iter( &mut self, problem: &mut Problem<O>, state: IterState<P, G, (), H, (), F> ) -> Result<(IterState<P, G, (), H, (), F>, Option<KV>), Error>
Computes a single iteration of the algorithm and has access to the optimization problem
definition and the internal state of the solver.
Returns an updated
state
and optionally a KV
which holds key-value pairs used in
Observers.source§fn init(
&mut self,
_problem: &mut Problem<O>,
state: I
) -> Result<(I, Option<KV>), Error>
fn init( &mut self, _problem: &mut Problem<O>, state: I ) -> Result<(I, Option<KV>), Error>
Initializes the algorithm. Read more
source§fn terminate_internal(&mut self, state: &I) -> TerminationStatus
fn terminate_internal(&mut self, state: &I) -> TerminationStatus
Checks whether basic termination reasons apply. Read more
source§fn terminate(&mut self, _state: &I) -> TerminationStatus
fn terminate(&mut self, _state: &I) -> TerminationStatus
Used to implement stopping criteria, in particular criteria which are not covered by
(
terminate_internal
. Read moreimpl<F: Copy> Copy for Newton<F>
Auto Trait Implementations§
impl<F> RefUnwindSafe for Newton<F>where
F: RefUnwindSafe,
impl<F> Send for Newton<F>where
F: Send,
impl<F> Sync for Newton<F>where
F: Sync,
impl<F> Unpin for Newton<F>where
F: Unpin,
impl<F> UnwindSafe for Newton<F>where
F: UnwindSafe,
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more