1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
use crate::{
    primitives::{Arc, Line, Point},
    Vector,
};
use std::{
    iter,
    iter::{Chain, Once},
};

/// Approximate a shape with a bunch of points.
pub trait Approximate {
    type Iter: Iterator<Item = Vector>;

    /// Approximate the shape, ensuring the resulting path is within `tolerance`
    /// units of the original.
    fn approximate(&self, tolerance: f64) -> Self::Iter;
}

impl<'a, A: Approximate + ?Sized> Approximate for &'a A {
    type Iter = A::Iter;

    fn approximate(&self, tolerance: f64) -> Self::Iter {
        (*self).approximate(tolerance)
    }
}

impl Approximate for Point {
    type Iter = Once<Vector>;

    fn approximate(&self, _tolerance: f64) -> Self::Iter {
        std::iter::once(self.location)
    }
}

impl Approximate for Line {
    type Iter = Chain<Once<Vector>, Once<Vector>>;

    fn approximate(&self, _tolerance: f64) -> Self::Iter {
        iter::once(self.start).chain(iter::once(self.end))
    }
}

impl Approximate for Arc {
    type Iter = ApproximatedArc;

    fn approximate(&self, tolerance: f64) -> Self::Iter {
        // Draw a chord between points A and B on a circle with centre C.
        // Draw a line which bisects the angle ACB and intersects with the
        // chord at point D.
        // The distance from D to the arc is our "quality"
        // (i.e. |CD| + quality = radius).
        //
        // From the triangle DCB:
        //   cos(θ/2) = |CD|/R
        //   cos(θ/2) = 1 - quality/R
        //
        //  where θ is the angle swept by a chord with the desired "quality".
        //
        // # line segments to approximate with the specified quality:
        //   N = ⌈SweepAngle/θ⌉

        let (steps, delta) = if tolerance <= 0.0 || self.radius() <= tolerance {
            (1, self.sweep_angle())
        } else {
            let cos_theta_on_two = 1.0 - tolerance / self.radius();
            let theta = cos_theta_on_two.acos() * 2.0;
            let line_segment_count = self.sweep_angle() / theta;

            // make sure we always have at least 2 points
            let line_segment_count = f64::max(line_segment_count, 2.0);
            let actual_step = self.sweep_angle() / line_segment_count;

            (line_segment_count.ceil().abs() as usize, actual_step)
        };

        ApproximatedArc {
            i: 0,
            steps,
            step_size: delta,
            arc: *self,
        }
    }
}

/// An iterator over the points in an arc approximation.
///
/// This shouldn't be used directly, you are probably looking for
/// `Arc::approximate()`.
#[derive(Debug, Clone)]
pub struct ApproximatedArc {
    i: usize,
    steps: usize,
    step_size: f64,
    arc: Arc,
}

impl Iterator for ApproximatedArc {
    type Item = Vector;

    fn next(&mut self) -> Option<Self::Item> {
        if self.i > self.steps {
            return None;
        }

        let point = self.arc.point_at(self.i as f64 * self.step_size);
        self.i += 1;
        Some(point)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use std::f64::consts::PI;

    #[test]
    fn approximate_arc_with_points() {
        let arc = Arc::from_centre_radius(Vector::zero(), 100.0, 0.0, PI / 2.0);
        let quality = 10.0;

        let pieces: Vec<_> = arc.approximate(quality).collect();

        for &piece in &pieces {
            let error = arc.radius() - (piece - arc.centre()).length();
            assert!(error < quality);
        }
        assert_eq!(arc.start(), *pieces.first().unwrap());
        assert_eq!(arc.end(), *pieces.last().unwrap());
    }
}