1pub mod authenticated;
3pub mod unauthenticated;
4
5use std::borrow::Borrow;
6
7pub use authenticated::*;
8use itertools::{enumerate, izip};
9use serde::{de::DeserializeOwned, Serialize};
10
11use crate::{
12 algebra::{field::FieldExtension, ops::transpose::transpose},
13 errors::{PrimitiveError, VerificationError},
14 random::{CryptoRngCore, RandomWith},
15 types::PeerIndex,
16 utils::TakeExact,
17};
18
19pub trait Reconstructible: Sized {
24 type Opening: Serialize + DeserializeOwned + Clone + Send + Sync + 'static;
26 type Secret: Serialize + DeserializeOwned + Clone + PartialEq + Send + Sync + 'static;
28
29 fn open_to(&self, peer_index: PeerIndex) -> Result<Self::Opening, PrimitiveError>;
31
32 fn open_to_all_others(&self) -> impl ExactSizeIterator<Item = Self::Opening>;
35
36 fn reconstruct(&self, openings: &[Self::Opening]) -> Result<Self::Secret, PrimitiveError>;
38
39 fn reconstruct_all<T: Borrow<Self>>(shares: &[T]) -> Result<Self::Secret, PrimitiveError> {
43 let n_parties = shares.len();
44 if n_parties < 2 {
45 return Err(PrimitiveError::InvalidParameters(
46 "At least two shares are required for reconstruction.".to_string(),
47 ));
48 }
49 let mut all_openings = shares
51 .iter()
52 .map(|share| share.borrow().open_to_all_others())
53 .collect::<Vec<_>>();
54 enumerate(shares.iter())
56 .map(|(i, share)| {
57 let my_openings = enumerate(all_openings.iter_mut())
58 .take_exact(n_parties)
59 .filter(|(j, _)| i != *j)
60 .map(|(_, opening)| opening.next())
61 .collect::<Option<Vec<_>>>()
62 .ok_or(VerificationError::MissingOpening(i))?;
63 share.borrow().reconstruct(my_openings.as_slice())
64 })
65 .reduce(|previous, current| match (previous, current) {
67 (Ok(prev), Ok(curr)) => match prev == curr {
68 true => Ok(prev),
69 false => Err(VerificationError::OpeningMismatch(
70 serde_json::to_string(&prev).unwrap(),
71 serde_json::to_string(&curr).unwrap(),
72 )
73 .into()),
74 },
75 (Err(e), _) | (_, Err(e)) => Err(e),
76 })
77 .unwrap() }
79}
80
81impl<T: Reconstructible<Opening: Clone>> Reconstructible for Vec<T> {
82 type Opening = Vec<T::Opening>;
83 type Secret = Vec<T::Secret>;
84
85 fn open_to(&self, peer_index: PeerIndex) -> Result<Self::Opening, PrimitiveError> {
86 self.iter().map(|share| share.open_to(peer_index)).collect()
87 }
88
89 fn open_to_all_others(&self) -> impl ExactSizeIterator<Item = Self::Opening> {
90 let all_openings: Vec<Vec<_>> = self
91 .iter()
92 .map(|share| share.open_to_all_others().collect())
93 .collect();
94
95 transpose(all_openings).into_iter()
96 }
97
98 fn reconstruct(&self, openings: &[Self::Opening]) -> Result<Self::Secret, PrimitiveError> {
99 if openings.is_empty() {
100 return Err(PrimitiveError::InvalidParameters(
101 "At least one opening is required for reconstruction.".to_string(),
102 ));
103 }
104
105 if openings[0].len() != self.len() {
106 return Err(PrimitiveError::InvalidParameters(
107 "Number of openings must match number of shares.".to_string(),
108 ));
109 }
110
111 let mut reconstructed = Vec::with_capacity(self.len());
113 for (i, share) in self.iter().enumerate() {
114 let my_openings: Vec<_> = openings
115 .iter()
116 .map(|opening| opening.get(i).cloned())
117 .collect::<Option<Vec<_>>>()
118 .ok_or(PrimitiveError::InvalidParameters(
119 "Opening is missing for some share.".to_string(),
120 ))?;
121 reconstructed.push(share.reconstruct(my_openings.as_slice())?);
122 }
123 Ok(reconstructed)
124 }
125}
126
127impl<T: Reconstructible, S: Reconstructible> Reconstructible for (T, S) {
128 type Opening = (T::Opening, S::Opening);
129 type Secret = (T::Secret, S::Secret);
130
131 fn open_to(&self, peer_index: PeerIndex) -> Result<Self::Opening, PrimitiveError> {
132 Ok((self.0.open_to(peer_index)?, self.1.open_to(peer_index)?))
133 }
134
135 fn open_to_all_others(&self) -> impl ExactSizeIterator<Item = Self::Opening> {
136 let all_openings_t: Vec<_> = self.0.open_to_all_others().collect();
137 let all_openings_s: Vec<_> = self.1.open_to_all_others().collect();
138 izip!(all_openings_t, all_openings_s).map(|(o1, o2)| (o1, o2))
139 }
140
141 fn reconstruct(&self, openings: &[Self::Opening]) -> Result<Self::Secret, PrimitiveError> {
142 let (openings_t, openings_s): (Vec<_>, Vec<_>) = openings.iter().cloned().unzip();
143 Ok((
144 self.0.reconstruct(&openings_t)?,
145 self.1.reconstruct(&openings_s)?,
146 ))
147 }
148}
149
150pub trait RandomAuthenticatedForNPeers<F: FieldExtension>:
154 RandomWith<Vec<Vec<GlobalFieldKey<F>>>>
155{
156 fn random_for_n_peers_with_alphas<Container: FromIterator<Self>>(
157 mut rng: impl CryptoRngCore,
158 n_parties: usize,
159 all_alphas: Vec<Vec<GlobalFieldKey<F>>>,
160 ) -> Container {
161 Self::random_n_with(&mut rng, n_parties, all_alphas)
162 }
163}
164
165impl<F: FieldExtension, S: RandomWith<Vec<Vec<GlobalFieldKey<F>>>>> RandomAuthenticatedForNPeers<F>
166 for S
167{
168}
169
170pub trait RandomAuthenticatedForNPeersWith<F: FieldExtension, T: Clone>:
171 RandomWith<(T, Vec<Vec<GlobalFieldKey<F>>>)>
172{
173 fn random_authenticated_for_n_peers_with<Container: FromIterator<Self>>(
174 mut rng: impl CryptoRngCore,
175 n_parties: usize,
176 value: T,
177 all_alphas: Vec<Vec<GlobalFieldKey<F>>>,
178 ) -> Container {
179 Self::random_n_with(&mut rng, n_parties, (value, all_alphas))
180 }
181}
182
183impl<F: FieldExtension, T: Clone, S: RandomWith<(T, Vec<Vec<GlobalFieldKey<F>>>)>>
184 RandomAuthenticatedForNPeersWith<F, T> for S
185{
186}
187
188pub trait AddPlaintext: Reconstructible {
190 type AssociatedInformation: Clone + Send + Sync;
193 fn add_plaintext(&self, plaintext: &Self::Secret, assoc: Self::AssociatedInformation) -> Self;
195
196 fn add_plaintext_owned(
198 self,
199 plaintext: &Self::Secret,
200 assoc: Self::AssociatedInformation,
201 ) -> Self {
202 self.add_plaintext(plaintext, assoc)
203 }
204}
205
206#[cfg(test)]
207mod tests {
208 use super::*;
209 use crate::{algebra::elliptic_curve::Curve25519Ristretto, random::Random};
210
211 #[test]
212 fn test_transpose_empty_matrix() {
213 let matrix: Vec<Vec<i32>> = vec![];
214 let result = transpose(matrix.clone());
215 assert_eq!(result, matrix);
216 }
217
218 #[test]
219 fn test_transpose_empty_rows() {
220 let matrix: Vec<Vec<i32>> = vec![];
221 let result = transpose(matrix.clone());
222 assert_eq!(result, matrix);
223 }
224
225 #[test]
226 fn test_transpose_single_element() {
227 let matrix = vec![vec![1]];
228 let result = transpose(matrix);
229 assert_eq!(result, vec![vec![1]]);
230 }
231
232 #[test]
233 fn test_transpose_single_row() {
234 let matrix = vec![vec![1, 2, 3]];
235 let result = transpose(matrix);
236 assert_eq!(result, vec![vec![1], vec![2], vec![3]]);
237 }
238
239 #[test]
240 fn test_transpose_single_column() {
241 let matrix = vec![vec![1], vec![2], vec![3]];
242 let result = transpose(matrix);
243 assert_eq!(result, vec![vec![1, 2, 3]]);
244 }
245
246 #[test]
247 fn test_transpose_square_matrix() {
248 let matrix = vec![vec![1, 2, 3], vec![4, 5, 6], vec![7, 8, 9]];
249 let result = transpose(matrix);
250 let expected = vec![vec![1, 4, 7], vec![2, 5, 8], vec![3, 6, 9]];
251 assert_eq!(result, expected);
252 }
253
254 #[test]
255 fn test_transpose_rectangular_matrix() {
256 let matrix = vec![vec![1, 2, 3, 4], vec![5, 6, 7, 8]];
257 let result = transpose(matrix);
258 let expected = vec![vec![1, 5], vec![2, 6], vec![3, 7], vec![4, 8]];
259 assert_eq!(result, expected);
260 }
261
262 #[test]
263 fn test_transpose_with_strings() {
264 let matrix = vec![vec!["a", "b"], vec!["c", "d"], vec!["e", "f"]];
265 let result = transpose(matrix);
266 let expected = vec![vec!["a", "c", "e"], vec!["b", "d", "f"]];
267 assert_eq!(result, expected);
268 }
269
270 #[test]
271 fn test_transpose_double_transpose() {
272 let matrix = vec![vec![1, 2, 3], vec![4, 5, 6]];
273 let result = transpose(transpose(matrix.clone()));
274 assert_eq!(result, matrix);
275 }
276
277 #[test]
278 fn test_reconstruct_vec() {
279 let n_parties = 3;
280 let mut rng = crate::random::test_rng();
281
282 let scalar_shares: Vec<_> =
283 ScalarShares::<Curve25519Ristretto, typenum::U5>::random_n(&mut rng, n_parties);
284 let scalar_shares = scalar_shares
285 .into_iter()
286 .map(|s| s.into_iter().collect::<Vec<_>>())
287 .collect::<Vec<_>>();
288
289 let reconstructed =
290 Vec::<ScalarShare<Curve25519Ristretto>>::reconstruct_all(&scalar_shares).unwrap();
291 let expected = (0..5)
292 .map(|i| {
293 ScalarShare::<Curve25519Ristretto>::reconstruct_all(
294 &scalar_shares.iter().map(|v| &v[i]).collect::<Vec<_>>(),
295 )
296 .unwrap()
297 })
298 .collect::<Vec<_>>();
299 assert_eq!(reconstructed, expected);
300 }
301
302 #[test]
303 fn test_reconstruct_tuple() {
304 let n_parties = 3;
305 let mut rng = crate::random::test_rng();
306
307 let scalar_shares: Vec<_> =
308 ScalarShare::<Curve25519Ristretto>::random_n(&mut rng, n_parties);
309 let base_field_shares: Vec<_> =
310 BaseFieldShare::<Curve25519Ristretto>::random_n(&mut rng, n_parties);
311
312 let shares: Vec<(
313 ScalarShare<Curve25519Ristretto>,
314 BaseFieldShare<Curve25519Ristretto>,
315 )> = izip!(&scalar_shares, &base_field_shares)
316 .map(|(s, b)| (s.clone(), b.clone()))
317 .collect();
318
319 let reconstructed = <(
320 ScalarShare<Curve25519Ristretto>,
321 BaseFieldShare<Curve25519Ristretto>,
322 )>::reconstruct_all(&shares)
323 .unwrap();
324
325 assert_eq!(
326 reconstructed.0,
327 ScalarShare::<Curve25519Ristretto>::reconstruct_all(&scalar_shares).unwrap()
328 );
329 assert_eq!(
330 reconstructed.1,
331 BaseFieldShare::<Curve25519Ristretto>::reconstruct_all(&base_field_shares).unwrap()
332 );
333 }
334}