archmage_macros/lib.rs
1//! Proc-macros for archmage SIMD capability tokens.
2//!
3//! Provides `#[arcane]` attribute (with `#[arcane]` alias) to make raw intrinsics
4//! safe via token proof.
5
6use proc_macro::TokenStream;
7use quote::{format_ident, quote, ToTokens};
8use syn::{
9 fold::Fold,
10 parse::{Parse, ParseStream},
11 parse_macro_input, parse_quote, Attribute, FnArg, GenericParam, Ident, ItemFn, PatType,
12 ReturnType, Signature, Token, Type, TypeParamBound,
13};
14
15/// A Fold implementation that replaces `Self` with a concrete type.
16struct ReplaceSelf<'a> {
17 replacement: &'a Type,
18}
19
20impl Fold for ReplaceSelf<'_> {
21 fn fold_type(&mut self, ty: Type) -> Type {
22 match ty {
23 Type::Path(ref type_path) if type_path.qself.is_none() => {
24 // Check if it's just `Self`
25 if type_path.path.is_ident("Self") {
26 return self.replacement.clone();
27 }
28 // Otherwise continue folding
29 syn::fold::fold_type(self, ty)
30 }
31 _ => syn::fold::fold_type(self, ty),
32 }
33 }
34}
35
36/// Arguments to the `#[arcane]` macro.
37#[derive(Default)]
38struct ArcaneArgs {
39 /// Use `#[inline(always)]` instead of `#[inline]` for the inner function.
40 /// Requires nightly Rust with `#![feature(target_feature_inline_always)]`.
41 inline_always: bool,
42 /// The concrete type to use for `self` receiver.
43 /// When specified, `self`/`&self`/`&mut self` is transformed to `_self: Type`/`&Type`/`&mut Type`.
44 self_type: Option<Type>,
45}
46
47impl Parse for ArcaneArgs {
48 fn parse(input: ParseStream) -> syn::Result<Self> {
49 let mut args = ArcaneArgs::default();
50
51 while !input.is_empty() {
52 let ident: Ident = input.parse()?;
53 match ident.to_string().as_str() {
54 "inline_always" => args.inline_always = true,
55 "_self" => {
56 let _: Token![=] = input.parse()?;
57 args.self_type = Some(input.parse()?);
58 }
59 other => {
60 return Err(syn::Error::new(
61 ident.span(),
62 format!("unknown arcane argument: `{}`", other),
63 ))
64 }
65 }
66 // Consume optional comma
67 if input.peek(Token![,]) {
68 let _: Token![,] = input.parse()?;
69 }
70 }
71
72 Ok(args)
73 }
74}
75
76// Token-to-features and trait-to-features mappings are generated from
77// token-registry.toml by xtask. Regenerate with: cargo run -p xtask -- generate
78mod generated;
79use generated::{token_to_arch, token_to_features, trait_to_features};
80
81/// Result of extracting token info from a type.
82enum TokenTypeInfo {
83 /// Concrete token type (e.g., `Avx2Token`)
84 Concrete(String),
85 /// impl Trait with the trait names (e.g., `impl HasX64V2`)
86 ImplTrait(Vec<String>),
87 /// Generic type parameter name (e.g., `T`)
88 Generic(String),
89}
90
91/// Extract token type information from a type.
92fn extract_token_type_info(ty: &Type) -> Option<TokenTypeInfo> {
93 match ty {
94 Type::Path(type_path) => {
95 // Get the last segment of the path (e.g., "Avx2Token" from "archmage::Avx2Token")
96 type_path.path.segments.last().map(|seg| {
97 let name = seg.ident.to_string();
98 // Check if it's a known concrete token type
99 if token_to_features(&name).is_some() {
100 TokenTypeInfo::Concrete(name)
101 } else {
102 // Might be a generic type parameter like `T`
103 TokenTypeInfo::Generic(name)
104 }
105 })
106 }
107 Type::Reference(type_ref) => {
108 // Handle &Token or &mut Token
109 extract_token_type_info(&type_ref.elem)
110 }
111 Type::ImplTrait(impl_trait) => {
112 // Handle `impl HasX64V2` or `impl HasX64V2 + HasNeon`
113 let traits: Vec<String> = extract_trait_names_from_bounds(&impl_trait.bounds);
114 if traits.is_empty() {
115 None
116 } else {
117 Some(TokenTypeInfo::ImplTrait(traits))
118 }
119 }
120 _ => None,
121 }
122}
123
124/// Extract trait names from type param bounds.
125fn extract_trait_names_from_bounds(
126 bounds: &syn::punctuated::Punctuated<TypeParamBound, Token![+]>,
127) -> Vec<String> {
128 bounds
129 .iter()
130 .filter_map(|bound| {
131 if let TypeParamBound::Trait(trait_bound) = bound {
132 trait_bound
133 .path
134 .segments
135 .last()
136 .map(|seg| seg.ident.to_string())
137 } else {
138 None
139 }
140 })
141 .collect()
142}
143
144/// Look up a generic type parameter in the function's generics.
145fn find_generic_bounds(sig: &Signature, type_name: &str) -> Option<Vec<String>> {
146 // Check inline bounds first (e.g., `fn foo<T: HasX64V2>(token: T)`)
147 for param in &sig.generics.params {
148 if let GenericParam::Type(type_param) = param {
149 if type_param.ident == type_name {
150 let traits = extract_trait_names_from_bounds(&type_param.bounds);
151 if !traits.is_empty() {
152 return Some(traits);
153 }
154 }
155 }
156 }
157
158 // Check where clause (e.g., `fn foo<T>(token: T) where T: HasX64V2`)
159 if let Some(where_clause) = &sig.generics.where_clause {
160 for predicate in &where_clause.predicates {
161 if let syn::WherePredicate::Type(pred_type) = predicate {
162 if let Type::Path(type_path) = &pred_type.bounded_ty {
163 if let Some(seg) = type_path.path.segments.last() {
164 if seg.ident == type_name {
165 let traits = extract_trait_names_from_bounds(&pred_type.bounds);
166 if !traits.is_empty() {
167 return Some(traits);
168 }
169 }
170 }
171 }
172 }
173 }
174 }
175
176 None
177}
178
179/// Convert trait names to features, collecting all features from all traits.
180fn traits_to_features(trait_names: &[String]) -> Option<Vec<&'static str>> {
181 let mut all_features = Vec::new();
182
183 for trait_name in trait_names {
184 if let Some(features) = trait_to_features(trait_name) {
185 for &feature in features {
186 if !all_features.contains(&feature) {
187 all_features.push(feature);
188 }
189 }
190 }
191 }
192
193 if all_features.is_empty() {
194 None
195 } else {
196 Some(all_features)
197 }
198}
199
200/// Find the first token parameter and return its name, features, and target arch.
201///
202/// Returns `(param_ident, features, target_arch)` where:
203/// - `param_ident`: the parameter identifier
204/// - `features`: the target features to enable
205/// - `target_arch`: the target architecture (Some for concrete tokens, None for traits/generics)
206fn find_token_param(sig: &Signature) -> Option<(Ident, Vec<&'static str>, Option<&'static str>)> {
207 for arg in &sig.inputs {
208 match arg {
209 FnArg::Receiver(_) => {
210 // Self receivers (self, &self, &mut self) are not yet supported.
211 // The macro creates an inner function, and Rust's inner functions
212 // cannot have `self` parameters. Supporting this would require
213 // AST rewriting to replace `self` with a regular parameter.
214 // See the module docs for the workaround.
215 continue;
216 }
217 FnArg::Typed(PatType { pat, ty, .. }) => {
218 if let Some(info) = extract_token_type_info(ty) {
219 let (features, arch) = match info {
220 TokenTypeInfo::Concrete(ref name) => {
221 let features = token_to_features(name).map(|f| f.to_vec());
222 let arch = token_to_arch(name);
223 (features, arch)
224 }
225 TokenTypeInfo::ImplTrait(trait_names) => {
226 (traits_to_features(&trait_names), None)
227 }
228 TokenTypeInfo::Generic(type_name) => {
229 // Look up the generic parameter's bounds
230 let features = find_generic_bounds(sig, &type_name)
231 .and_then(|traits| traits_to_features(&traits));
232 (features, None)
233 }
234 };
235
236 if let Some(features) = features {
237 // Extract parameter name
238 if let syn::Pat::Ident(pat_ident) = pat.as_ref() {
239 return Some((pat_ident.ident.clone(), features, arch));
240 }
241 }
242 }
243 }
244 }
245 }
246 None
247}
248
249/// Represents the kind of self receiver and the transformed parameter.
250enum SelfReceiver {
251 /// `self` (by value/move)
252 Owned,
253 /// `&self` (shared reference)
254 Ref,
255 /// `&mut self` (mutable reference)
256 RefMut,
257}
258
259/// Shared implementation for arcane/arcane macros.
260fn arcane_impl(input_fn: ItemFn, macro_name: &str, args: ArcaneArgs) -> TokenStream {
261 // Check for self receiver
262 let has_self_receiver = input_fn
263 .sig
264 .inputs
265 .first()
266 .map(|arg| matches!(arg, FnArg::Receiver(_)))
267 .unwrap_or(false);
268
269 // If there's a self receiver, we need _self = Type
270 if has_self_receiver && args.self_type.is_none() {
271 let msg = format!(
272 "{} with self receiver requires `_self = Type` argument.\n\
273 Example: #[{}(_self = MyType)]\n\
274 Use `_self` (not `self`) in the function body to refer to self.",
275 macro_name, macro_name
276 );
277 return syn::Error::new_spanned(&input_fn.sig, msg)
278 .to_compile_error()
279 .into();
280 }
281
282 // Find the token parameter, its features, and target arch
283 let (_token_ident, features, target_arch) = match find_token_param(&input_fn.sig) {
284 Some(result) => result,
285 None => {
286 let msg = format!(
287 "{} requires a token parameter. Supported forms:\n\
288 - Concrete: `token: X64V3Token`\n\
289 - impl Trait: `token: impl Has256BitSimd`\n\
290 - Generic: `fn foo<T: HasX64V2>(token: T, ...)`\n\
291 - With self: `#[{}(_self = Type)] fn method(&self, token: impl HasNeon, ...)`",
292 macro_name, macro_name
293 );
294 return syn::Error::new_spanned(&input_fn.sig, msg)
295 .to_compile_error()
296 .into();
297 }
298 };
299
300 // Build target_feature attributes
301 let target_feature_attrs: Vec<Attribute> = features
302 .iter()
303 .map(|feature| parse_quote!(#[target_feature(enable = #feature)]))
304 .collect();
305
306 // Extract function components
307 let vis = &input_fn.vis;
308 let sig = &input_fn.sig;
309 let fn_name = &sig.ident;
310 let generics = &sig.generics;
311 let where_clause = &generics.where_clause;
312 let inputs = &sig.inputs;
313 let output = &sig.output;
314 let body = &input_fn.block;
315 let attrs = &input_fn.attrs;
316
317 // Determine self receiver type if present
318 let self_receiver_kind: Option<SelfReceiver> = inputs.first().and_then(|arg| match arg {
319 FnArg::Receiver(receiver) => {
320 if receiver.reference.is_none() {
321 Some(SelfReceiver::Owned)
322 } else if receiver.mutability.is_some() {
323 Some(SelfReceiver::RefMut)
324 } else {
325 Some(SelfReceiver::Ref)
326 }
327 }
328 _ => None,
329 });
330
331 // Build inner function parameters, transforming self if needed
332 let inner_params: Vec<proc_macro2::TokenStream> = inputs
333 .iter()
334 .map(|arg| match arg {
335 FnArg::Receiver(_) => {
336 // Transform self receiver to _self parameter
337 let self_ty = args.self_type.as_ref().unwrap();
338 match self_receiver_kind.as_ref().unwrap() {
339 SelfReceiver::Owned => quote!(_self: #self_ty),
340 SelfReceiver::Ref => quote!(_self: &#self_ty),
341 SelfReceiver::RefMut => quote!(_self: &mut #self_ty),
342 }
343 }
344 FnArg::Typed(pat_type) => quote!(#pat_type),
345 })
346 .collect();
347
348 // Build inner function call arguments
349 let inner_args: Vec<proc_macro2::TokenStream> = inputs
350 .iter()
351 .filter_map(|arg| match arg {
352 FnArg::Typed(pat_type) => {
353 if let syn::Pat::Ident(pat_ident) = pat_type.pat.as_ref() {
354 let ident = &pat_ident.ident;
355 Some(quote!(#ident))
356 } else {
357 None
358 }
359 }
360 FnArg::Receiver(_) => Some(quote!(self)), // Pass self to inner as _self
361 })
362 .collect();
363
364 let inner_fn_name = format_ident!("__simd_inner_{}", fn_name);
365
366 // Choose inline attribute based on args
367 // Note: #[inline(always)] + #[target_feature] requires nightly with
368 // #![feature(target_feature_inline_always)]
369 let inline_attr: Attribute = if args.inline_always {
370 parse_quote!(#[inline(always)])
371 } else {
372 parse_quote!(#[inline])
373 };
374
375 // Transform output and body to replace Self with concrete type if needed
376 let (inner_output, inner_body): (ReturnType, syn::Block) =
377 if let Some(ref self_ty) = args.self_type {
378 let mut replacer = ReplaceSelf {
379 replacement: self_ty,
380 };
381 let transformed_output = replacer.fold_return_type(output.clone());
382 let transformed_body = replacer.fold_block((**body).clone());
383 (transformed_output, transformed_body)
384 } else {
385 (output.clone(), (**body).clone())
386 };
387
388 // Generate the expanded function
389 // If we know the target arch (concrete token), generate cfg-gated real impl + stub
390 let expanded = if let Some(arch) = target_arch {
391 quote! {
392 // Real implementation for the correct architecture
393 #[cfg(target_arch = #arch)]
394 #(#attrs)*
395 #vis #sig {
396 #(#target_feature_attrs)*
397 #inline_attr
398 fn #inner_fn_name #generics (#(#inner_params),*) #inner_output #where_clause
399 #inner_body
400
401 // SAFETY: The token parameter proves the required CPU features are available.
402 // Calling a #[target_feature] function from a non-matching context requires
403 // unsafe because the CPU may not support those instructions. The token's
404 // existence proves summon() succeeded, so the features are available.
405 unsafe { #inner_fn_name(#(#inner_args),*) }
406 }
407
408 // Stub for other architectures - the token cannot be obtained, so this is unreachable
409 #[cfg(not(target_arch = #arch))]
410 #(#attrs)*
411 #vis #sig {
412 // This token type cannot be summoned on this architecture.
413 // If you're seeing this at runtime, there's a bug in your dispatch logic.
414 let _ = (#(#inner_args),*); // suppress unused warnings
415 unreachable!(
416 concat!(
417 "Called ",
418 stringify!(#fn_name),
419 " with a token that cannot exist on this architecture. ",
420 "This token requires target_arch = \"",
421 #arch,
422 "\"."
423 )
424 )
425 }
426 }
427 } else {
428 // No specific arch (trait bounds or generic) - generate without cfg guards
429 quote! {
430 #(#attrs)*
431 #vis #sig {
432 #(#target_feature_attrs)*
433 #inline_attr
434 fn #inner_fn_name #generics (#(#inner_params),*) #inner_output #where_clause
435 #inner_body
436
437 // SAFETY: Calling a #[target_feature] function from a non-matching context
438 // requires unsafe. The token proves the required CPU features are available.
439 unsafe { #inner_fn_name(#(#inner_args),*) }
440 }
441 }
442 };
443
444 expanded.into()
445}
446
447/// Mark a function as an arcane SIMD function.
448///
449/// This macro enables safe use of SIMD intrinsics by generating an inner function
450/// with the appropriate `#[target_feature(enable = "...")]` attributes based on
451/// the token parameter type. The outer function calls the inner function unsafely,
452/// which is justified because the token parameter proves the features are available.
453///
454/// **The token is passed through to the inner function**, so you can call other
455/// token-taking functions from inside `#[arcane]`.
456///
457/// # Token Parameter Forms
458///
459/// The macro supports four forms of token parameters:
460///
461/// ## Concrete Token Types
462///
463/// ```ignore
464/// #[arcane]
465/// fn process(token: Avx2Token, data: &[f32; 8]) -> [f32; 8] {
466/// // AVX2 intrinsics safe here
467/// }
468/// ```
469///
470/// ## impl Trait Bounds
471///
472/// ```ignore
473/// #[arcane]
474/// fn process(token: impl HasX64V2, data: &[f32; 8]) -> [f32; 8] {
475/// // Accepts any token with x86-64-v2 features (SSE4.2+)
476/// }
477/// ```
478///
479/// ## Generic Type Parameters
480///
481/// ```ignore
482/// #[arcane]
483/// fn process<T: HasX64V2>(token: T, data: &[f32; 8]) -> [f32; 8] {
484/// // Generic over any v2-capable token
485/// }
486///
487/// // Also works with where clauses:
488/// #[arcane]
489/// fn process<T>(token: T, data: &[f32; 8]) -> [f32; 8]
490/// where
491/// T: HasX64V2
492/// {
493/// // ...
494/// }
495/// ```
496///
497/// ## Methods with Self Receivers
498///
499/// Methods with `self`, `&self`, `&mut self` receivers are supported via the
500/// `_self = Type` argument. Use `_self` in the function body instead of `self`:
501///
502/// ```ignore
503/// use archmage::{X64V3Token, arcane};
504/// use wide::f32x8;
505///
506/// trait SimdOps {
507/// fn double(&self, token: X64V3Token) -> Self;
508/// fn square(self, token: X64V3Token) -> Self;
509/// fn scale(&mut self, token: X64V3Token, factor: f32);
510/// }
511///
512/// impl SimdOps for f32x8 {
513/// #[arcane(_self = f32x8)]
514/// fn double(&self, _token: X64V3Token) -> Self {
515/// // Use _self instead of self in the body
516/// *_self + *_self
517/// }
518///
519/// #[arcane(_self = f32x8)]
520/// fn square(self, _token: X64V3Token) -> Self {
521/// _self * _self
522/// }
523///
524/// #[arcane(_self = f32x8)]
525/// fn scale(&mut self, _token: X64V3Token, factor: f32) {
526/// *_self = *_self * f32x8::splat(factor);
527/// }
528/// }
529/// ```
530///
531/// **Why `_self`?** The macro generates an inner function where `self` becomes
532/// a regular parameter named `_self`. Using `_self` in your code reminds you
533/// that you're not using the normal `self` keyword.
534///
535/// **All receiver types are supported:**
536/// - `self` (by value/move) → `_self: Type`
537/// - `&self` (shared reference) → `_self: &Type`
538/// - `&mut self` (mutable reference) → `_self: &mut Type`
539///
540/// # Multiple Trait Bounds
541///
542/// When using `impl Trait` or generic bounds with multiple traits,
543/// all required features are enabled:
544///
545/// ```ignore
546/// #[arcane]
547/// fn fma_kernel(token: impl HasX64V2 + HasNeon, data: &[f32; 8]) -> [f32; 8] {
548/// // Cross-platform: SSE4.2 on x86, NEON on ARM
549/// }
550/// ```
551///
552/// # Expansion
553///
554/// The macro expands to approximately:
555///
556/// ```ignore
557/// fn process(token: Avx2Token, data: &[f32; 8]) -> [f32; 8] {
558/// #[target_feature(enable = "avx2")]
559/// #[inline]
560/// fn __simd_inner_process(token: Avx2Token, data: &[f32; 8]) -> [f32; 8] {
561/// let v = unsafe { _mm256_loadu_ps(data.as_ptr()) };
562/// let doubled = _mm256_add_ps(v, v);
563/// let mut out = [0.0f32; 8];
564/// unsafe { _mm256_storeu_ps(out.as_mut_ptr(), doubled) };
565/// out
566/// }
567/// // SAFETY: Calling #[target_feature] fn from non-matching context.
568/// // Token proves the required features are available.
569/// unsafe { __simd_inner_process(token, data) }
570/// }
571/// ```
572///
573/// # Profile Tokens
574///
575/// Profile tokens automatically enable all required features:
576///
577/// ```ignore
578/// #[arcane]
579/// fn kernel(token: X64V3Token, data: &mut [f32]) {
580/// // AVX2 + FMA + BMI1 + BMI2 intrinsics all safe here!
581/// }
582/// ```
583///
584/// # Supported Tokens
585///
586/// - **x86_64 tiers**: `X64V2Token`, `X64V3Token` / `Desktop64` / `Avx2FmaToken`,
587/// `X64V4Token` / `Avx512Token` / `Server64`, `Avx512ModernToken`, `Avx512Fp16Token`
588/// - **ARM**: `NeonToken` / `Arm64`, `NeonAesToken`, `NeonSha3Token`, `NeonCrcToken`
589/// - **WASM**: `Wasm128Token`
590///
591/// # Supported Trait Bounds
592///
593/// - **x86_64 tiers**: `HasX64V2`, `HasX64V4`
594/// - **ARM**: `HasNeon`, `HasNeonAes`, `HasNeonSha3`
595///
596/// **Preferred:** Use concrete tokens (`X64V3Token`, `Desktop64`, `NeonToken`) directly.
597/// Concrete token types also work as trait bounds (e.g., `impl X64V3Token`).
598///
599/// # Options
600///
601/// ## `inline_always`
602///
603/// Use `#[inline(always)]` instead of `#[inline]` for the inner function.
604/// This can improve performance by ensuring aggressive inlining, but requires
605/// nightly Rust with `#![feature(target_feature_inline_always)]` enabled in
606/// the crate using the macro.
607///
608/// ```ignore
609/// #![feature(target_feature_inline_always)]
610///
611/// #[arcane(inline_always)]
612/// fn fast_kernel(token: Avx2Token, data: &mut [f32]) {
613/// // Inner function will use #[inline(always)]
614/// }
615/// ```
616#[proc_macro_attribute]
617pub fn arcane(attr: TokenStream, item: TokenStream) -> TokenStream {
618 let args = parse_macro_input!(attr as ArcaneArgs);
619 let input_fn = parse_macro_input!(item as ItemFn);
620 arcane_impl(input_fn, "arcane", args)
621}
622
623/// Legacy alias for [`arcane`].
624///
625/// **Deprecated:** Use `#[arcane]` instead. This alias exists only for migration.
626#[proc_macro_attribute]
627#[doc(hidden)]
628pub fn simd_fn(attr: TokenStream, item: TokenStream) -> TokenStream {
629 let args = parse_macro_input!(attr as ArcaneArgs);
630 let input_fn = parse_macro_input!(item as ItemFn);
631 arcane_impl(input_fn, "simd_fn", args)
632}
633
634// ============================================================================
635// Rite macro for inner SIMD functions (no wrapper overhead)
636// ============================================================================
637
638/// Annotate inner SIMD helpers called from `#[arcane]` functions.
639///
640/// Unlike `#[arcane]`, which creates a wrapper function, `#[rite]` simply adds
641/// `#[target_feature]` and `#[inline]` attributes. This allows the function to
642/// inline directly into calling `#[arcane]` functions without optimization barriers.
643///
644/// # When to Use
645///
646/// Use `#[rite]` for helper functions that are **only** called from within
647/// `#[arcane]` functions with matching or superset token types:
648///
649/// ```ignore
650/// use archmage::{arcane, rite, X64V3Token};
651///
652/// #[arcane]
653/// fn outer(token: X64V3Token, data: &[f32; 8]) -> f32 {
654/// // helper inlines directly - no wrapper overhead
655/// helper(token, data) * 2.0
656/// }
657///
658/// #[rite]
659/// fn helper(token: X64V3Token, data: &[f32; 8]) -> f32 {
660/// // Just has #[target_feature(enable = "avx2,fma,...")]
661/// // Called from #[arcane] context, so features are guaranteed
662/// let v = f32x8::from_array(token, *data);
663/// v.reduce_add()
664/// }
665/// ```
666///
667/// # Safety
668///
669/// `#[rite]` functions can only be safely called from contexts where the
670/// required CPU features are enabled:
671/// - From within `#[arcane]` functions with matching/superset tokens
672/// - From within other `#[rite]` functions with matching/superset tokens
673/// - From code compiled with `-Ctarget-cpu` that enables the features
674///
675/// Calling from other contexts requires `unsafe` and the caller must ensure
676/// the CPU supports the required features.
677///
678/// # Comparison with #[arcane]
679///
680/// | Aspect | `#[arcane]` | `#[rite]` |
681/// |--------|-------------|-----------|
682/// | Creates wrapper | Yes | No |
683/// | Entry point | Yes | No |
684/// | Inlines into caller | No (barrier) | Yes |
685/// | Safe to call anywhere | Yes (with token) | Only from feature-enabled context |
686#[proc_macro_attribute]
687pub fn rite(attr: TokenStream, item: TokenStream) -> TokenStream {
688 // Parse optional arguments (currently just inline_always)
689 let args = parse_macro_input!(attr as RiteArgs);
690 let input_fn = parse_macro_input!(item as ItemFn);
691 rite_impl(input_fn, args)
692}
693
694/// Arguments for the `#[rite]` macro.
695///
696/// Currently empty - `#[inline(always)]` is not supported because
697/// `#[inline(always)]` + `#[target_feature]` requires nightly Rust.
698/// The regular `#[inline]` hint is sufficient when called from
699/// matching `#[target_feature]` contexts.
700#[derive(Default)]
701struct RiteArgs {
702 // No options currently - inline_always doesn't work on stable
703}
704
705impl Parse for RiteArgs {
706 fn parse(input: ParseStream) -> syn::Result<Self> {
707 if !input.is_empty() {
708 let ident: Ident = input.parse()?;
709 return Err(syn::Error::new(
710 ident.span(),
711 "#[rite] takes no arguments. Note: inline_always is not supported \
712 because #[inline(always)] + #[target_feature] requires nightly Rust.",
713 ));
714 }
715 Ok(RiteArgs::default())
716 }
717}
718
719/// Implementation for the `#[rite]` macro.
720fn rite_impl(mut input_fn: ItemFn, args: RiteArgs) -> TokenStream {
721 // Find the token parameter and its features
722 let (_, features, target_arch) = match find_token_param(&input_fn.sig) {
723 Some(result) => result,
724 None => {
725 let msg = "rite requires a token parameter. Supported forms:\n\
726 - Concrete: `token: X64V3Token`\n\
727 - impl Trait: `token: impl HasX64V2`\n\
728 - Generic: `fn foo<T: HasX64V2>(token: T, ...)`";
729 return syn::Error::new_spanned(&input_fn.sig, msg)
730 .to_compile_error()
731 .into();
732 }
733 };
734
735 // Build target_feature attributes
736 let target_feature_attrs: Vec<Attribute> = features
737 .iter()
738 .map(|feature| parse_quote!(#[target_feature(enable = #feature)]))
739 .collect();
740
741 // Always use #[inline] - #[inline(always)] + #[target_feature] requires nightly
742 let _ = args; // RiteArgs is currently empty but kept for future extensibility
743 let inline_attr: Attribute = parse_quote!(#[inline]);
744
745 // Prepend attributes to the function
746 let mut new_attrs = target_feature_attrs;
747 new_attrs.push(inline_attr);
748 new_attrs.append(&mut input_fn.attrs);
749 input_fn.attrs = new_attrs;
750
751 // If we know the target arch, generate cfg-gated impl + stub
752 if let Some(arch) = target_arch {
753 let vis = &input_fn.vis;
754 let sig = &input_fn.sig;
755 let attrs = &input_fn.attrs;
756 let block = &input_fn.block;
757
758 quote! {
759 #[cfg(target_arch = #arch)]
760 #(#attrs)*
761 #vis #sig
762 #block
763
764 #[cfg(not(target_arch = #arch))]
765 #vis #sig {
766 unreachable!(concat!(
767 "This function requires ",
768 #arch,
769 " architecture"
770 ))
771 }
772 }
773 .into()
774 } else {
775 // No specific arch (trait bounds) - just emit the annotated function
776 quote!(#input_fn).into()
777 }
778}
779
780// =============================================================================
781// magetypes! macro - generate platform variants from generic function
782// =============================================================================
783
784/// Configuration for a magetypes variant
785struct MagetypesVariant {
786 suffix: &'static str,
787 token_type: &'static str,
788 target_arch: Option<&'static str>,
789 cargo_feature: Option<&'static str>,
790}
791
792const MAGETYPES_VARIANTS: &[MagetypesVariant] = &[
793 // x86_64 V3 (AVX2)
794 MagetypesVariant {
795 suffix: "v3",
796 token_type: "archmage::X64V3Token",
797 target_arch: Some("x86_64"),
798 cargo_feature: None,
799 },
800 // x86_64 V4 (AVX-512)
801 MagetypesVariant {
802 suffix: "v4",
803 token_type: "archmage::X64V4Token",
804 target_arch: Some("x86_64"),
805 cargo_feature: Some("avx512"),
806 },
807 // aarch64 NEON
808 MagetypesVariant {
809 suffix: "neon",
810 token_type: "archmage::NeonToken",
811 target_arch: Some("aarch64"),
812 cargo_feature: None,
813 },
814 // wasm32 SIMD128
815 MagetypesVariant {
816 suffix: "wasm128",
817 token_type: "archmage::Wasm128Token",
818 target_arch: Some("wasm32"),
819 cargo_feature: None,
820 },
821 // Scalar fallback
822 MagetypesVariant {
823 suffix: "scalar",
824 token_type: "archmage::ScalarToken",
825 target_arch: None, // Always available
826 cargo_feature: None,
827 },
828];
829
830/// Generate platform-specific variants from a function by replacing `Token`.
831///
832/// Use `Token` as a placeholder for the token type. The macro generates
833/// suffixed variants (`_v3`, `_v4`, `_neon`, `_wasm128`, `_scalar`) with
834/// `Token` replaced by the concrete token type, and each variant wrapped
835/// in the appropriate `#[cfg(target_arch = ...)]` guard.
836///
837/// # What gets replaced
838///
839/// **Only `Token`** is replaced — with the concrete token type for each variant
840/// (e.g., `archmage::X64V3Token`, `archmage::ScalarToken`). SIMD types like
841/// `f32x8` and constants like `LANES` are **not** replaced by this macro.
842///
843/// This means `#[magetypes]` works well for functions that only need the token
844/// (e.g., to pass to other functions), but not for functions that use
845/// platform-specific SIMD types directly. For those, write `_v3` and `_scalar`
846/// variants manually and use `incant!` for dispatch.
847///
848/// # Example
849///
850/// ```rust,ignore
851/// use archmage::magetypes;
852///
853/// // Works: function only uses Token, no SIMD types
854/// #[magetypes]
855/// fn process(token: Token, data: &[f32]) -> f32 {
856/// // delegates to other functions that handle SIMD internally
857/// inner_simd_work(token, data)
858/// }
859///
860/// // Generates:
861/// // - process_v3(token: X64V3Token, ...) — #[cfg(target_arch = "x86_64")]
862/// // - process_v4(token: X64V4Token, ...) — #[cfg(target_arch = "x86_64", feature = "avx512")]
863/// // - process_neon(token: NeonToken, ...) — #[cfg(target_arch = "aarch64")]
864/// // - process_wasm128(token: Wasm128Token, ...) — #[cfg(target_arch = "wasm32")]
865/// // - process_scalar(token: ScalarToken, ...) — always available
866/// ```
867///
868/// # Usage with incant!
869///
870/// The generated variants work with `incant!` for dispatch:
871///
872/// ```rust,ignore
873/// pub fn process_api(data: &[f32]) -> f32 {
874/// incant!(process(data))
875/// }
876/// ```
877#[proc_macro_attribute]
878pub fn magetypes(attr: TokenStream, item: TokenStream) -> TokenStream {
879 // Ignore attributes for now (could add variant selection later)
880 let _ = attr;
881 let input_fn = parse_macro_input!(item as ItemFn);
882 magetypes_impl(input_fn)
883}
884
885fn magetypes_impl(input_fn: ItemFn) -> TokenStream {
886 let fn_name = &input_fn.sig.ident;
887 let fn_attrs = &input_fn.attrs;
888
889 // Convert function to string for text substitution
890 let fn_str = input_fn.to_token_stream().to_string();
891
892 let mut variants = Vec::new();
893
894 for variant in MAGETYPES_VARIANTS {
895 // Create suffixed function name
896 let suffixed_name = format!("{}_{}", fn_name, variant.suffix);
897
898 // Do text substitution
899 let mut variant_str = fn_str.clone();
900
901 // Replace function name
902 variant_str = variant_str.replacen(&fn_name.to_string(), &suffixed_name, 1);
903
904 // Replace Token type with concrete token
905 variant_str = variant_str.replace("Token", variant.token_type);
906
907 // Parse back to tokens
908 let variant_tokens: proc_macro2::TokenStream = match variant_str.parse() {
909 Ok(t) => t,
910 Err(e) => {
911 return syn::Error::new_spanned(
912 &input_fn,
913 format!(
914 "Failed to parse generated variant `{}`: {}",
915 suffixed_name, e
916 ),
917 )
918 .to_compile_error()
919 .into();
920 }
921 };
922
923 // Add cfg guards
924 let cfg_guard = match (variant.target_arch, variant.cargo_feature) {
925 (Some(arch), Some(feature)) => {
926 quote! { #[cfg(all(target_arch = #arch, feature = #feature))] }
927 }
928 (Some(arch), None) => {
929 quote! { #[cfg(target_arch = #arch)] }
930 }
931 (None, Some(feature)) => {
932 quote! { #[cfg(feature = #feature)] }
933 }
934 (None, None) => {
935 quote! {} // No guard needed (scalar)
936 }
937 };
938
939 variants.push(quote! {
940 #cfg_guard
941 #variant_tokens
942 });
943 }
944
945 // Remove attributes from the list that should not be duplicated
946 let filtered_attrs: Vec<_> = fn_attrs
947 .iter()
948 .filter(|a| !a.path().is_ident("magetypes"))
949 .collect();
950
951 let output = quote! {
952 #(#filtered_attrs)*
953 #(#variants)*
954 };
955
956 output.into()
957}
958
959// =============================================================================
960// incant! macro - dispatch to platform-specific variants
961// =============================================================================
962
963/// Input for the incant! macro
964struct IncantInput {
965 /// Function name to call
966 func_name: Ident,
967 /// Arguments to pass
968 args: Vec<syn::Expr>,
969 /// Optional token variable for passthrough mode
970 with_token: Option<syn::Expr>,
971}
972
973impl Parse for IncantInput {
974 fn parse(input: ParseStream) -> syn::Result<Self> {
975 // Parse: function_name(arg1, arg2, ...) [with token_expr]
976 let func_name: Ident = input.parse()?;
977
978 // Parse parenthesized arguments
979 let content;
980 syn::parenthesized!(content in input);
981 let args = content
982 .parse_terminated(syn::Expr::parse, Token![,])?
983 .into_iter()
984 .collect();
985
986 // Check for optional "with token"
987 let with_token = if input.peek(Ident) {
988 let kw: Ident = input.parse()?;
989 if kw != "with" {
990 return Err(syn::Error::new_spanned(kw, "expected `with` keyword"));
991 }
992 Some(input.parse()?)
993 } else {
994 None
995 };
996
997 Ok(IncantInput {
998 func_name,
999 args,
1000 with_token,
1001 })
1002 }
1003}
1004
1005/// Dispatch to platform-specific SIMD variants.
1006///
1007/// # Entry Point Mode (no token yet)
1008///
1009/// Summons tokens and dispatches to the best available variant:
1010///
1011/// ```rust,ignore
1012/// pub fn public_api(data: &[f32]) -> f32 {
1013/// incant!(dot(data))
1014/// }
1015/// ```
1016///
1017/// Expands to runtime feature detection + dispatch to `dot_v3`, `dot_v4`,
1018/// `dot_neon`, `dot_wasm128`, or `dot_scalar`.
1019///
1020/// # Passthrough Mode (already have token)
1021///
1022/// Uses compile-time dispatch via `IntoConcreteToken`:
1023///
1024/// ```rust,ignore
1025/// #[arcane]
1026/// fn outer(token: X64V3Token, data: &[f32]) -> f32 {
1027/// incant!(inner(data) with token)
1028/// }
1029/// ```
1030///
1031/// The compiler monomorphizes the dispatch, eliminating non-matching branches.
1032///
1033/// # Variant Naming
1034///
1035/// Functions must have suffixed variants:
1036/// - `_v3` for `X64V3Token`
1037/// - `_v4` for `X64V4Token` (requires `avx512` feature)
1038/// - `_neon` for `NeonToken`
1039/// - `_wasm128` for `Wasm128Token`
1040/// - `_scalar` for `ScalarToken`
1041#[proc_macro]
1042pub fn incant(input: TokenStream) -> TokenStream {
1043 let input = parse_macro_input!(input as IncantInput);
1044 incant_impl(input)
1045}
1046
1047/// Legacy alias for [`incant!`].
1048#[proc_macro]
1049pub fn simd_route(input: TokenStream) -> TokenStream {
1050 let input = parse_macro_input!(input as IncantInput);
1051 incant_impl(input)
1052}
1053
1054fn incant_impl(input: IncantInput) -> TokenStream {
1055 let func_name = &input.func_name;
1056 let args = &input.args;
1057
1058 // Create suffixed function names
1059 let fn_v3 = format_ident!("{}_v3", func_name);
1060 let fn_v4 = format_ident!("{}_v4", func_name);
1061 let fn_neon = format_ident!("{}_neon", func_name);
1062 let fn_wasm128 = format_ident!("{}_wasm128", func_name);
1063 let fn_scalar = format_ident!("{}_scalar", func_name);
1064
1065 // Use labeled blocks instead of `return` so incant! can be chained.
1066 // Labeled blocks are stable since Rust 1.65.
1067 if let Some(token_expr) = &input.with_token {
1068 // Passthrough mode: use IntoConcreteToken for compile-time dispatch
1069 let expanded = quote! {
1070 '__incant: {
1071 use archmage::IntoConcreteToken;
1072 let __incant_token = #token_expr;
1073
1074 #[cfg(any(target_arch = "x86_64", target_arch = "x86"))]
1075 {
1076 #[cfg(feature = "avx512")]
1077 if let Some(__t) = __incant_token.as_x64v4() {
1078 break '__incant #fn_v4(__t, #(#args),*);
1079 }
1080 if let Some(__t) = __incant_token.as_x64v3() {
1081 break '__incant #fn_v3(__t, #(#args),*);
1082 }
1083 }
1084
1085 #[cfg(target_arch = "aarch64")]
1086 if let Some(__t) = __incant_token.as_neon() {
1087 break '__incant #fn_neon(__t, #(#args),*);
1088 }
1089
1090 #[cfg(target_arch = "wasm32")]
1091 if let Some(__t) = __incant_token.as_wasm128() {
1092 break '__incant #fn_wasm128(__t, #(#args),*);
1093 }
1094
1095 if let Some(__t) = __incant_token.as_scalar() {
1096 break '__incant #fn_scalar(__t, #(#args),*);
1097 }
1098
1099 unreachable!("Token did not match any known variant")
1100 }
1101 };
1102 expanded.into()
1103 } else {
1104 // Entry point mode: summon tokens and dispatch
1105 let expanded = quote! {
1106 '__incant: {
1107 use archmage::SimdToken;
1108
1109 #[cfg(any(target_arch = "x86_64", target_arch = "x86"))]
1110 {
1111 #[cfg(feature = "avx512")]
1112 if let Some(__t) = archmage::X64V4Token::summon() {
1113 break '__incant #fn_v4(__t, #(#args),*);
1114 }
1115 if let Some(__t) = archmage::X64V3Token::summon() {
1116 break '__incant #fn_v3(__t, #(#args),*);
1117 }
1118 }
1119
1120 #[cfg(target_arch = "aarch64")]
1121 if let Some(__t) = archmage::NeonToken::summon() {
1122 break '__incant #fn_neon(__t, #(#args),*);
1123 }
1124
1125 #[cfg(target_arch = "wasm32")]
1126 if let Some(__t) = archmage::Wasm128Token::summon() {
1127 break '__incant #fn_wasm128(__t, #(#args),*);
1128 }
1129
1130 // Scalar fallback
1131 #fn_scalar(archmage::ScalarToken, #(#args),*)
1132 }
1133 };
1134 expanded.into()
1135 }
1136}
1137
1138// =============================================================================
1139// Unit tests for token/trait recognition maps
1140// =============================================================================
1141
1142#[cfg(test)]
1143mod tests {
1144 use super::*;
1145
1146 use super::generated::{ALL_CONCRETE_TOKENS, ALL_TRAIT_NAMES};
1147
1148 #[test]
1149 fn every_concrete_token_is_in_token_to_features() {
1150 for &name in ALL_CONCRETE_TOKENS {
1151 assert!(
1152 token_to_features(name).is_some(),
1153 "Token `{}` exists in runtime crate but is NOT recognized by \
1154 token_to_features() in the proc macro. Add it!",
1155 name
1156 );
1157 }
1158 }
1159
1160 #[test]
1161 fn every_trait_is_in_trait_to_features() {
1162 for &name in ALL_TRAIT_NAMES {
1163 assert!(
1164 trait_to_features(name).is_some(),
1165 "Trait `{}` exists in runtime crate but is NOT recognized by \
1166 trait_to_features() in the proc macro. Add it!",
1167 name
1168 );
1169 }
1170 }
1171
1172 #[test]
1173 fn token_aliases_map_to_same_features() {
1174 // Desktop64 = X64V3Token
1175 assert_eq!(
1176 token_to_features("Desktop64"),
1177 token_to_features("X64V3Token"),
1178 "Desktop64 and X64V3Token should map to identical features"
1179 );
1180
1181 // Server64 = X64V4Token = Avx512Token
1182 assert_eq!(
1183 token_to_features("Server64"),
1184 token_to_features("X64V4Token"),
1185 "Server64 and X64V4Token should map to identical features"
1186 );
1187 assert_eq!(
1188 token_to_features("X64V4Token"),
1189 token_to_features("Avx512Token"),
1190 "X64V4Token and Avx512Token should map to identical features"
1191 );
1192
1193 // Arm64 = NeonToken
1194 assert_eq!(
1195 token_to_features("Arm64"),
1196 token_to_features("NeonToken"),
1197 "Arm64 and NeonToken should map to identical features"
1198 );
1199 }
1200
1201 #[test]
1202 fn trait_to_features_includes_tokens_as_bounds() {
1203 // Tier tokens should also work as trait bounds
1204 // (for `impl X64V3Token` patterns, even though Rust won't allow it,
1205 // the macro processes AST before type checking)
1206 let tier_tokens = [
1207 "X64V2Token",
1208 "X64V3Token",
1209 "Desktop64",
1210 "Avx2FmaToken",
1211 "X64V4Token",
1212 "Avx512Token",
1213 "Server64",
1214 "Avx512ModernToken",
1215 "Avx512Fp16Token",
1216 "NeonToken",
1217 "Arm64",
1218 "NeonAesToken",
1219 "NeonSha3Token",
1220 "NeonCrcToken",
1221 ];
1222
1223 for &name in &tier_tokens {
1224 assert!(
1225 trait_to_features(name).is_some(),
1226 "Tier token `{}` should also be recognized in trait_to_features() \
1227 for use as a generic bound. Add it!",
1228 name
1229 );
1230 }
1231 }
1232
1233 #[test]
1234 fn trait_features_are_cumulative() {
1235 // HasX64V4 should include all HasX64V2 features plus more
1236 let v2_features = trait_to_features("HasX64V2").unwrap();
1237 let v4_features = trait_to_features("HasX64V4").unwrap();
1238
1239 for &f in v2_features {
1240 assert!(
1241 v4_features.contains(&f),
1242 "HasX64V4 should include v2 feature `{}` but doesn't",
1243 f
1244 );
1245 }
1246
1247 // v4 should have more features than v2
1248 assert!(
1249 v4_features.len() > v2_features.len(),
1250 "HasX64V4 should have more features than HasX64V2"
1251 );
1252 }
1253
1254 #[test]
1255 fn x64v3_trait_features_include_v2() {
1256 // X64V3Token as trait bound should include v2 features
1257 let v2 = trait_to_features("HasX64V2").unwrap();
1258 let v3 = trait_to_features("X64V3Token").unwrap();
1259
1260 for &f in v2 {
1261 assert!(
1262 v3.contains(&f),
1263 "X64V3Token trait features should include v2 feature `{}` but don't",
1264 f
1265 );
1266 }
1267 }
1268
1269 #[test]
1270 fn has_neon_aes_includes_neon() {
1271 let neon = trait_to_features("HasNeon").unwrap();
1272 let neon_aes = trait_to_features("HasNeonAes").unwrap();
1273
1274 for &f in neon {
1275 assert!(
1276 neon_aes.contains(&f),
1277 "HasNeonAes should include NEON feature `{}`",
1278 f
1279 );
1280 }
1281 }
1282
1283 #[test]
1284 fn no_removed_traits_are_recognized() {
1285 // These traits were removed in 0.3.0 and should NOT be recognized
1286 let removed = [
1287 "HasSse",
1288 "HasSse2",
1289 "HasSse41",
1290 "HasSse42",
1291 "HasAvx",
1292 "HasAvx2",
1293 "HasFma",
1294 "HasAvx512f",
1295 "HasAvx512bw",
1296 "HasAvx512vl",
1297 "HasAvx512vbmi2",
1298 "HasSve",
1299 "HasSve2",
1300 ];
1301
1302 for &name in &removed {
1303 assert!(
1304 trait_to_features(name).is_none(),
1305 "Removed trait `{}` should NOT be in trait_to_features(). \
1306 It was removed in 0.3.0 — users should migrate to tier traits.",
1307 name
1308 );
1309 }
1310 }
1311
1312 #[test]
1313 fn no_nonexistent_tokens_are_recognized() {
1314 // These tokens don't exist and should NOT be recognized
1315 let fake = [
1316 "Sse2Token",
1317 "SveToken",
1318 "Sve2Token",
1319 "Avx512VnniToken",
1320 "X64V4ModernToken",
1321 "NeonFp16Token",
1322 ];
1323
1324 for &name in &fake {
1325 assert!(
1326 token_to_features(name).is_none(),
1327 "Non-existent token `{}` should NOT be in token_to_features()",
1328 name
1329 );
1330 }
1331 }
1332}