arbi/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
/*
Copyright 2024-2025 Owain Davies
SPDX-License-Identifier: Apache-2.0 OR MIT
*/
#![doc = include_str!("../README.md")]
#![cfg_attr(docsrs, feature(doc_cfg))]
#![forbid(unsafe_code)]
#![warn(missing_docs)]
#![cfg_attr(not(feature = "std"), no_std)]
#![cfg_attr(feature = "nightly", feature(test))]
extern crate alloc;
#[cfg(all(feature = "nightly", test))]
extern crate test;
use alloc::vec::Vec;
mod add;
mod assign;
mod assign_double;
mod assign_integral;
mod assign_string;
pub mod base;
mod bits;
mod bitwise;
mod builtin_int_methods;
mod capacity;
mod comparisons;
mod comparisons_double;
mod comparisons_integral;
mod display;
mod division;
#[allow(unknown_lints)]
#[allow(clippy::doc_lazy_continuation)]
pub mod docs;
mod exponentiation;
mod fits;
mod floor;
mod from_double;
mod from_integral;
mod from_string;
mod increment_decrement;
mod is_odd_is_even;
mod is_signed;
mod is_zero;
mod left_shift;
mod macros;
mod multiplication;
mod negate;
mod new;
mod print_internal;
mod random;
mod right_shift;
mod sign;
mod size;
mod to_double;
mod to_integral;
mod to_string;
mod to_twos_complement;
mod uints;
mod unary_ops;
mod util;
mod zero_and_one;
pub use assign::Assign;
pub use base::{Base, BaseError};
pub use exponentiation::Pow; // No PowAssign implementations yet
pub use fits::Fits;
pub use from_string::ParseError;
#[cfg(feature = "rand")]
#[cfg_attr(docsrs, doc(cfg(feature = "rand")))]
pub use random::RandomArbi;
/// Unsigned integer type representing a base-[`Arbi::BASE`] digit.
pub type Digit = u32;
/// Unsigned integer type used for counts of bits.
///
/// # Note
/// A [`Vec`] has maximum capacity of `isize::MAX` in bytes. The unsigned
/// integer type used to count bits must have width greater than `usize` in
/// order to represent the theoretical number of bits that can be used at
/// maximum capacity. Currently, a `u128` is used, which should accomodate most
/// systems today. A custom unsigned integer type might be created in the future
/// for future-proofing.
pub type BitCount = u128;
#[allow(dead_code)]
type SDigit = i32;
type DDigit = u64;
type SDDigit = i64;
#[allow(dead_code)]
type QDigit = u128;
#[allow(dead_code)]
type SQDigit = i128;
const DBL_MAX_INT: u64 = 0x20000000000000; // 2 ** 53
/// Arbitrary Precision Integer type.
///
/// # Internal Representation
/// The internal representation of an `Arbi` integer consists of a boolean field
/// encoding whether or not the integer is negative, as well as a [`Vec`] of
/// [`Digit`]s (an unsigned integer type) encoding the absolute value of the
/// integer with least significant digits first. A "digit" is a
/// base-[`Arbi::BASE`] digit (i.e. an integer in
/// \\( [0, \text{Arbi::BASE} - 1] = [0, \text{Digit::MAX}] \\)).
///
/// # Limits
/// - [`Arbi::MAX_CAPACITY`]: [`Vec`] is limited to `isize::MAX` bytes in
/// capacity. A digit has size in bytes `core::mem::size_of::<Digit>()`. The
/// maximum capacity is therefore `isize::MAX / core::mem::size_of::<Digit>()`.
/// - [`Arbi::MAX_BITS`]: At maximum capacity, [`Arbi::MAX_BITS`] bits are
/// available to represent the absolute value of the `Arbi` integer.
///
/// When resizing/reserving more space, if the needed space exceeds `isize::MAX`
/// in bytes, the `Vec` allocation methods currently used will panic to signal
/// `capacity overflow`. The `Vec` allocation methods also panic if the
/// allocator reports allocation failure. In practice, memory allocation
/// typically fails for less than `isize::MAX` in bytes.
///
/// In the future, we may choose to explicitly handle such errors to avoid a
/// panic, where it makes sense.
///
/// # Panic
/// In general:
/// - If an operation can panic, it will be clearly documented.
///
/// - Operations typically only panic because they are enforcing consistency
/// with the behavior of primitive integer types. For example, a division by
/// zero panics. Similarly, [`Arbi::from_str_radix()`] and
/// [`Arbi::to_string_radix()`] panic if the `radix` argument value is
/// invalid, consistent with the built-in analogues. [`Arbi::from_str_base()`]
/// and [`Arbi::to_string_base()`] are equivalent, except that they do not
/// panic on invalid bases.
///
/// - Because [`Vec`] is limited to `isize::MAX` bytes in capacity, if an
/// operation would lead to an `Arbi` requiring more than `isize::MAX` bytes
/// in capacity, then the current `Vec` allocation methods used will panic.
/// The `Vec` allocation methods also panic if the allocator reports
/// allocation failure. In practice, memory allocation typically fails for
/// less than `isize::MAX` in bytes.
///
/// - Some operations, such as exponentiation, might know in advance that the
/// result will need a capacity that will exceed `Vec`'s limits. In such
/// cases, the program will panic immediately, rather than allow it to run a
/// long computation that is guaranteed to exhaust memory.
#[derive(Clone, Debug, Default)]
pub struct Arbi {
/// Stores the magnitude of this integer, least significant digits first
/// (base `Digit::MAX + 1`).
vec: Vec<Digit>,
/// `true` if and only if this integer is strictly negative.
neg: bool,
}
impl Arbi {
/// Base used for the internal representation of the integer.
#[allow(clippy::unnecessary_cast)]
pub const BASE: DDigit = (1 as DDigit) << Digit::BITS;
/// Take away trailing zeros in the internal digit vector until we find the
/// most significant digit. If the vector is empty after this process, make
/// this integer have value `0`.
#[inline(always)]
fn trim(&mut self) {
while !self.vec.is_empty() && self.vec.last() == Some(&0) {
self.vec.pop();
}
if self.vec.is_empty() {
self.neg = false;
}
}
/// Make this `Arbi` integer have value `0`, in-place.
#[inline(always)]
fn make_zero(&mut self) {
self.vec.clear();
self.neg = false;
}
/// Make this `Arbi` integer have value `1`, in-place.
#[inline(always)]
fn make_one(&mut self, neg: bool) {
self.vec.resize(1, 0);
self.vec[0] = 1;
self.neg = neg;
}
/// Same as cloning but ensuring a given capacity prior.
pub(crate) fn with_capacity_and_copy(capacity: usize, arbi: &Arbi) -> Self {
let mut new_vec = Vec::with_capacity(capacity);
new_vec.extend_from_slice(&arbi.vec);
Self {
vec: new_vec,
neg: arbi.neg,
}
}
// TODO: make from_digits(), from_slice(), ... type functions public, once
// names have been decided.
/// Return a new `Arbi` integer with magnitude given by `digits` (least
/// significant digits first).
///
/// No memory allocation occurs.
#[allow(dead_code)]
pub(crate) fn from_digits(digits: Vec<Digit>, is_negative: bool) -> Self {
let mut arbi = Arbi {
neg: is_negative,
vec: digits,
};
arbi.trim();
arbi
}
/// Return a new `Arbi` integer with magnitude given by `digits` (least
/// significant digits first).
#[allow(dead_code)]
pub(crate) fn from_slice(digits: &[Digit], is_negative: bool) -> Self {
let mut arbi = Arbi {
neg: is_negative,
vec: digits.to_vec(),
};
arbi.trim();
arbi
}
/// Assign from a slice of `digits` representing the magnitude.
///
/// No memory allocation occurs if the original internal digit vector has
/// enough capacity to store `digits`.
#[allow(dead_code)]
pub(crate) fn assign_slice(&mut self, digits: &[Digit], is_negative: bool) {
self.vec.clear();
self.vec.extend_from_slice(digits);
self.neg = is_negative;
self.trim();
}
}