arbi/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
/*
Copyright 2024 Owain Davies
SPDX-License-Identifier: Apache-2.0 OR MIT
*/

#![doc = include_str!("../README.md")]
#![forbid(unsafe_code)]
#![no_std]
extern crate alloc;

#[allow(unused_imports)]
use alloc::string::String;
use alloc::vec::Vec;

mod add;
mod assign;
mod assign_double;
mod assign_integral;
mod assign_string;
pub mod base;
mod bit_length;
mod bits;
mod bitwise;
mod builtin_int_methods;
mod comparisons;
mod comparisons_double;
mod comparisons_integral;
mod display;
mod division;
#[cfg(not(doctest))]
#[allow(clippy::doc_lazy_continuation)]
pub mod doc;
mod exponentiation;
mod fits;
mod floor;
mod from_double;
mod from_integral;
mod from_string;
mod increment_decrement;
mod is_signed;
mod left_shift;
mod multiplication;
mod print_internal;
mod right_shift;
mod to_double;
mod to_integral;
mod to_string;
mod to_twos_complement;
mod uints;
mod unary_ops;
mod util;

pub use assign::Assign;
pub use base::{Base, BaseError};
pub use exponentiation::Pow; // No PowAssign implementations yet
pub use fits::Fits;
pub use from_string::ParseError;

/// Unsigned integer type representing a base-[`Arbi::BASE`] digit.
pub type Digit = u32;

/// Unsigned integer type used for counts of bits.
///
/// # Note
/// A [`Vec`] has maximum capacity of `isize::MAX` in bytes. The unsigned
/// integer type used to count bits must have width greater than `usize` in
/// order to represent the theoretical number of bits that can be used at
/// maximum capacity. Currently, a `u128` is used, which should accomodate most
/// systems today. A custom unsigned integer type might be created in the future
/// for future-proofing.
pub type BitCount = u128;

#[allow(dead_code)]
type SDigit = i32;

type DDigit = u64;
type SDDigit = i64;

#[allow(dead_code)]
type QDigit = u128;
#[allow(dead_code)]
type SQDigit = i128;

const DBL_MAX_INT: u64 = 0x20000000000000; // 2 ** 53

/// Arbitrary Precision Integer type.
///
/// # Internal Representation
/// The internal representation of an `Arbi` integer consists of a boolean field
/// encoding whether or not the integer is negative, as well as a [`Vec`] of
/// [`Digit`]s (an unsigned integer type) encoding the absolute value of the
/// integer with least significant digits first. A "digit" is a
/// base-[`Arbi::BASE`] digit (i.e. an integer in
/// \\( [0, \text{Arbi::BASE} - 1] = [0, \text{Digit::MAX}] \\)).
///
/// # Limits
/// - [`Arbi::MAX_CAPACITY`]: [`Vec`] is limited to `isize::MAX` bytes in
///   capacity. A digit has size in bytes `core::mem::size_of::<Digit>()`. The
///   maximum capacity is therefore `isize::MAX / core::mem::size_of::<Digit>()`.
/// - [`Arbi::MAX_BITS`]: At maximum capacity, [`Arbi::MAX_BITS`] bits are
///   available to represent the absolute value of the `Arbi` integer.
///
/// When resizing/reserving more space, if the needed space exceeds `isize::MAX`
/// in bytes, the `Vec` allocation methods currently used will panic to signal
/// `capacity overflow`. The `Vec` allocation methods also panic if the
/// allocator reports allocation failure. In practice, memory allocation
/// typically fails for less than `isize::MAX` in bytes.
///
/// In the future, we may choose to explicitly handle such errors to avoid a
/// panic, where it makes sense.
///
/// # Panic
/// In general:
/// - This crate prefers not to panic, unless for good reason.
///
/// - If an operation can panic, it will be clearly documented.
///
/// - Operations typically only panic because they are enforcing consistency
///   with the behavior of primitive integer types. For example, a division by
///   zero panics. Similarly, [`Arbi::from_str_radix()`] and
///   [`Arbi::to_string_radix()`] panic if the `radix` argument value is
///   invalid, consistent with the built-in analogues. [`Arbi::from_str_base()`]
///   and [`Arbi::to_string_base()`] are equivalent, except that they do not
///   panic on invalid bases.
///
/// - Because [`Vec`] is limited to `isize::MAX` bytes in capacity, if an
///   operation would lead to an `Arbi` requiring more than `isize::MAX` bytes
///   in capacity, then the current `Vec` allocation methods used will panic.
///   The `Vec` allocation methods also panic if the allocator reports
///   allocation failure. In practice, memory allocation typically fails for
///   less than `isize::MAX` in bytes.
///
/// - Some operations, such as exponentiation, might know in advance that the
///   result will need a capacity that will exceed `Vec`'s limits. In such
///   cases, the program will panic immediately, rather than allow it to run a
///   long computation that is guaranteed to exhaust memory.
#[derive(Clone, Debug, Default)]
pub struct Arbi {
    /// Stores the magnitude of this integer, least significant digits first
    /// (base `Digit::MAX + 1`).
    vec: Vec<Digit>,

    /// `true` if and only if this integer is strictly negative.
    neg: bool,
}

impl Arbi {
    /// Base used for the internal representation of the integer.
    pub const BASE: DDigit = (1 as DDigit) << Digit::BITS;

    /// Maximum capacity for the internal vector of digits.
    ///
    /// [`Vec`] is limited to `isize::MAX` bytes in capacity. A digit has size
    /// in bytes `core::mem::size_of::<Digit>()`. The maximum capacity is
    /// therefore `isize::MAX / core::mem::size_of::<Digit>()`.
    pub const MAX_CAPACITY: usize =
        (isize::MAX as usize) / core::mem::size_of::<Digit>();

    /// Maximum capacity for the internal vector of digits, in terms of bits.
    ///
    /// This represents the number of bits that can be used to represent the
    /// absolute value of the integer when the internal digit vector is at
    /// maximum capacity.
    ///
    /// This is `Arbi::MAX_CAPACITY * Digit::BITS`.
    pub const MAX_BITS: BitCount =
        Self::MAX_CAPACITY as BitCount * Digit::BITS as BitCount;

    /// Default constructor. The integer is initialized to zero and no memory
    /// allocation occurs.
    ///
    /// Note that [`Arbi::new()`], [`Arbi::zero()`], and [`Arbi::default()`] are
    /// all equivalent.
    ///
    /// # Examples
    /// ```
    /// use arbi::Arbi;
    ///
    /// let zero = Arbi::new();
    /// assert_eq!(zero, 0);
    /// ```
    ///
    /// ## Complexity
    /// \\( O(1) \\)
    #[inline(always)]
    pub fn new() -> Self {
        Self::default()
    }

    /// Equivalent to [`Arbi::new()`].
    ///
    /// # Examples
    /// ```
    /// use arbi::Arbi;
    ///
    /// let zero = Arbi::zero();
    /// assert_eq!(zero, 0);
    /// ```
    ///
    /// ## Complexity
    /// \\( O(1) \\)
    #[inline(always)]
    pub fn zero() -> Self {
        Self::default()
    }

    /// Construct a new `Arbi` integer with at least the specified capacity, in
    /// terms of [`Digit`]s.
    ///
    /// The integer's value will be `0`.
    ///
    /// # Examples
    /// ```
    /// use arbi::Arbi;
    ///
    /// let a = Arbi::with_capacity(10);
    /// assert_eq!(a.capacity(), 10);
    /// assert_eq!(a, 0);
    /// ```
    ///
    /// Panics if the new capacity exceeds `Arbi::MAX_CAPACITY` digits:
    /// ```should_panic
    /// use arbi::Arbi;
    ///
    /// let a = Arbi::with_capacity(Arbi::MAX_CAPACITY + 1);
    /// ```
    ///
    /// # Panic
    /// Panics if the new capacity exceeds `isize::MAX` bytes (or
    /// `Arbi::MAX_CAPACITY` digits) or if the allocator reports an allocation
    /// failure.
    #[inline(always)]
    pub fn with_capacity(capacity: usize) -> Self {
        Arbi {
            vec: Vec::with_capacity(capacity),
            neg: false,
        }
    }

    /// Construct a new `Arbi` integer with at least the specified capacity, in
    /// terms of bits.
    ///
    /// The integer's value will be `0`.
    ///
    /// # Examples
    /// ```
    /// use arbi::{Arbi, BitCount, Digit};
    ///
    /// let a = Arbi::with_capacity_bits(Digit::BITS as BitCount - 1);
    /// assert_eq!(a.capacity(), 1);
    /// assert_eq!(a, 0);
    ///
    /// let a = Arbi::with_capacity_bits(Digit::BITS as BitCount);
    /// assert_eq!(a.capacity(), 1);
    ///
    /// let a = Arbi::with_capacity_bits(Digit::BITS as BitCount + 1);
    /// assert_eq!(a.capacity(), 2);
    /// ```
    ///
    /// Panics if the new capacity in bits exceeds `Arbi::MAX_BITS` bits:
    /// ```should_panic
    /// use arbi::Arbi;
    ///
    /// // Panics with message: "New capacity exceeds `isize::MAX` bytes".
    /// let a = Arbi::with_capacity_bits(Arbi::MAX_BITS + 1);
    /// ```
    ///
    /// Note that, in practice, while the theoretical limit for the capacity
    /// of a `Vec` in bytes is `isize::MAX`, memory allocation failures
    /// typically happen for less.
    ///
    /// # Panic
    /// Panics if the new capacity exceeds `isize::MAX` bytes (or
    /// `Arbi::MAX_BITS` digits) or if the allocator reports an allocation
    /// failure.
    #[inline(always)]
    pub fn with_capacity_bits(capacity: BitCount) -> Self {
        let cap = BitCount::div_ceil(capacity, Digit::BITS as BitCount);
        if cap > Arbi::MAX_CAPACITY as BitCount {
            panic!("New capacity exceeds `isize::MAX` bytes");
        }

        Arbi {
            vec: Vec::with_capacity(cap as usize),
            neg: false,
        }
    }

    /// Returns the total number of elements the internal digit vector can hold
    /// without reallocating.
    ///
    /// # Examples
    /// ```
    /// use arbi::{Arbi, Assign};
    ///
    /// let zero = Arbi::zero();
    /// assert_eq!(zero.capacity(), 0);
    ///
    /// let mut b = Arbi::with_capacity(10);
    /// assert_eq!(b.capacity(), 10);
    ///
    /// b.assign(u64::MAX); // no memory allocation needed
    /// assert_eq!(b, u64::MAX);
    /// ```
    ///
    /// ## Complexity
    /// \\( O(1) \\)
    #[inline(always)]
    pub fn capacity(&self) -> usize {
        self.vec.capacity()
    }

    /// Return the total number of bits the current capacity can hold to
    /// represent the absolute value of this integer.
    ///
    /// # Examples
    /// ```
    /// use arbi::{Arbi, BitCount, Digit};
    ///
    /// let zero = Arbi::zero();
    /// assert_eq!(zero.capacity_bits(), 0);
    ///
    /// let a = Arbi::with_capacity_bits(Digit::BITS as BitCount);
    /// assert!(a.capacity_bits() >= Digit::BITS as BitCount);
    /// ```
    ///
    /// ## Complexitys
    /// \\( O(1) \\)
    #[inline(always)]
    pub fn capacity_bits(&self) -> BitCount {
        self.vec.capacity() as BitCount * Digit::BITS as BitCount
    }

    /// Return the number of [`Digit`]s used to represent the absolute value of
    /// this integer.
    ///
    /// Instance represents `0` if and only if `size() == 0`.
    ///
    /// # Examples
    /// ```
    /// use arbi::{Arbi, Digit};
    ///
    /// let zero = Arbi::zero();
    /// assert_eq!(zero.size(), 0);
    ///
    /// let mut a = Arbi::from(Digit::MAX);
    /// assert_eq!(a.size(), 1);
    ///
    /// a.incr();
    /// assert_eq!(a.size(), 2);
    /// ```
    ///
    /// ## Complexity
    /// \\( O(1) \\)
    #[inline(always)]
    pub fn size(&self) -> usize {
        self.vec.len()
    }

    /// Return the number of bits used to represent the absolute value of this
    /// integer.
    ///
    /// Instance represents `0` if and only if `size_bits() == 0`.
    ///
    /// This is equivalent to [`Arbi::bit_length()`].
    ///
    /// # Examples
    /// ```
    /// use arbi::{Arbi, BitCount, Digit};
    ///
    /// let zero = Arbi::zero();
    /// assert_eq!(zero.size_bits(), 0);
    ///
    /// let mut a = Arbi::from(Digit::MAX);
    /// assert_eq!(a.size_bits(), Digit::BITS as BitCount);
    ///
    /// a.incr();
    /// assert_eq!(a.size_bits(), Digit::BITS as BitCount + 1);
    /// ```
    ///
    /// ## Complexity
    /// \\( O(1) \\)
    #[inline(always)]
    pub fn size_bits(&self) -> BitCount {
        self.bit_length()
    }

    /// See [`Arbi::is_negative()`].
    #[inline(always)]
    fn negative(&self) -> bool {
        self.neg
    }

    /// Return `true` if this `Arbi` integer is (strictly) negative, `false`
    /// otherwise.
    ///
    /// # Examples
    /// ```
    /// use arbi::Arbi;
    ///
    /// let neg = Arbi::from(-1234);
    /// let pos = Arbi::from(1234);
    /// let zer = Arbi::zero();
    ///
    /// assert!(neg.is_negative());
    /// assert!(!pos.is_negative());
    /// assert!(!zer.is_negative());
    /// ```
    ///
    /// ## Complexity
    /// \\( O(1) \\)
    #[inline(always)]
    pub fn is_negative(&self) -> bool {
        self.neg
    }

    /// Take away trailing zeros in the internal digit vector until we find the
    /// most significant digit. If the vector is empty after this process, make
    /// this integer have value `0`.
    #[inline(always)]
    fn trim(&mut self) {
        while !self.vec.is_empty() && self.vec.last() == Some(&0) {
            self.vec.pop();
        }
        if self.vec.is_empty() {
            self.neg = false;
        }
    }

    /// Return `true` if this integer is odd, `false` otherwise.
    ///
    /// # Examples
    /// ```
    /// use arbi::Arbi;
    ///
    /// let zero = Arbi::zero();
    /// assert!(!zero.is_odd());
    ///
    /// let a = Arbi::from(-123456789);
    /// assert!(a.is_odd());
    ///
    /// let b = Arbi::from(-12345678);
    /// assert!(!b.is_odd());
    /// ```
    ///
    /// ## Complexity
    /// \\( O(1) \\)
    #[inline(always)]
    pub fn is_odd(&self) -> bool {
        if self.size() == 0 {
            false
        } else {
            (self.vec[0] & 1) != 0
        }
    }

    /// Return `true` if this integer is even, `false` otherwise.
    ///
    /// # Examples
    /// ```
    /// use arbi::Arbi;
    ///
    /// let zero = Arbi::zero();
    /// assert!(zero.is_even());
    ///
    /// let a = Arbi::from(-12345678);
    /// assert!(a.is_even());
    ///
    /// let b = Arbi::from(-123456789);
    /// assert!(!b.is_even());
    /// ```
    ///
    /// ## Complexity
    /// \\( O(1) \\)
    #[inline(always)]
    pub fn is_even(&self) -> bool {
        !self.is_odd()
    }

    /// Return `true` if this integer is zero, `false` otherwise.
    ///
    /// # Examples
    /// ```
    /// use arbi::Arbi;
    ///
    /// let a = Arbi::new();
    /// assert!(a.is_zero());
    ///
    /// let b = Arbi::with_capacity(10);
    /// assert!(a.is_zero());
    ///
    /// let c = Arbi::with_capacity_bits(100);
    /// assert!(c.is_zero());
    /// ```
    ///
    /// ## Complexity
    /// \\( O(1) \\)
    #[inline(always)]
    pub fn is_zero(&self) -> bool {
        self.vec.is_empty()
    }

    /// Make this `Arbi` integer have value `0`, in-place.
    #[inline(always)]
    fn make_zero(&mut self) {
        self.vec.clear();
        self.neg = false;
    }

    /// Make this `Arbi` integer have value `1`, in-place.
    #[inline(always)]
    fn make_one(&mut self, neg: bool) {
        self.vec.resize(1, 0);
        self.vec[0] = 1;
        self.neg = neg;
    }

    /// Negates the integer in-place.
    ///
    /// # Examples
    /// ```
    /// use arbi::Arbi;
    ///
    /// let mut pos = Arbi::from(123456789);
    ///
    /// pos.negate();
    /// assert_eq!(pos, -123456789);
    ///
    /// pos.negate();
    /// assert_eq!(pos, 123456789);
    /// ```
    ///
    /// ## Complexity
    /// \\( O(1) \\)
    #[inline(always)]
    pub fn negate(&mut self) {
        if self.size() > 0 {
            self.neg = !self.neg;
        }
    }

    /// Return a new integer representing the absolute value of this integer.
    ///
    /// For in-place negation (\\( O(1) \\) operation), see [`Arbi::negate()`].
    ///
    /// # Examples
    /// ```
    /// use arbi::Arbi;
    ///
    /// let neg = Arbi::from(-123456789);
    /// let pos = neg.abs();
    ///
    /// assert_eq!(pos, 123456789);
    /// ```
    ///
    /// ## Complexity
    /// \\( O(n) \\)
    #[inline(always)]
    pub fn abs(&self) -> Arbi {
        let mut ret = self.clone();
        if self.neg {
            ret.negate();
        }
        ret
    }

    /// Return an `Ordering` indicating the sign of the number: `Ordering::Less`
    /// for negative, `Ordering::Equal` for zero, `Ordering::Greater` for
    /// positive.
    ///
    /// # Examples
    /// ```
    /// use arbi::Arbi;
    /// use core::cmp::Ordering;
    ///
    /// let neg = Arbi::from(-123456789);
    /// let zer = Arbi::zero();
    /// let pos = Arbi::from(123456789);
    ///
    /// assert_eq!(neg.sign(), Ordering::Less);
    /// assert_eq!(zer.sign(), Ordering::Equal);
    /// assert_eq!(pos.sign(), Ordering::Greater);
    /// ```
    ///
    /// ## Complexity
    /// \\( O(1) \\)
    #[inline(always)]
    pub fn sign(&self) -> core::cmp::Ordering {
        if self.size() == 0 {
            core::cmp::Ordering::Equal
        } else if self.negative() {
            core::cmp::Ordering::Less
        } else {
            core::cmp::Ordering::Greater
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_even_or_odd() {
        let mut arbi: Arbi;

        arbi = Arbi::from(0);
        assert!(arbi.is_even());
        assert!(!arbi.is_odd());

        arbi = Arbi::from(Digit::MAX);
        assert!(arbi.is_odd());
        assert!(!arbi.is_even());

        arbi = Arbi::from(Digit::MAX as DDigit + 1);
        assert!(arbi.is_even());
        assert!(!arbi.is_odd());

        arbi = Arbi::from(-(Digit::MAX as SDDigit));
        assert!(arbi.is_odd());
        assert!(!arbi.is_even());

        arbi.decr();
        assert!(arbi.is_even());
        assert!(!arbi.is_odd());
    }

    #[test]
    fn test_abs() {
        let pos = Arbi::from(123);
        assert_eq!(123, pos.abs());

        let neg = Arbi::from(-123);
        assert_eq!(123, neg.abs());

        let zer = Arbi::from(0);
        assert_eq!(0, zer.abs());
    }

    #[test]
    fn test_negate() {
        let mut a = Arbi::from(123);
        let mut z = Arbi::zero();

        // Zero
        z.negate();
        assert_eq!(z, 0);

        // Positive
        a.negate();
        assert_eq!(a, -123);

        // Negative
        a.negate();
        assert_eq!(a, 123);

        a.negate();
        a.negate();
        assert_eq!(a, 123);
    }

    #[test]
    fn test_default() {
        let a = Arbi::default();
        assert_eq!(a, 0);

        assert_eq!(a.size(), 0);
        assert_eq!(a.negative(), false);
    }
}