1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
use crate::traits::Uniform;
use serde::{Deserialize, Serialize};
pub const TEST_SEED: [u8; 32] = [0u8; 32];
#[cfg_attr(feature = "cloneable-private-keys", derive(Clone))]
#[derive(Serialize, Deserialize, PartialEq, Eq)]
pub struct KeyPair<S, P>
where
for<'a> P: From<&'a S>,
{
pub private_key: S,
pub public_key: P,
}
impl<S, P> From<S> for KeyPair<S, P>
where
for<'a> P: From<&'a S>,
{
fn from(private_key: S) -> Self {
KeyPair {
public_key: (&private_key).into(),
private_key,
}
}
}
impl<S, P> Uniform for KeyPair<S, P>
where
S: Uniform,
for<'a> P: From<&'a S>,
{
fn generate<R>(rng: &mut R) -> Self
where
R: ::rand::RngCore + ::rand::CryptoRng,
{
let private_key = S::generate(rng);
private_key.into()
}
}
impl<S, P> Uniform for (S, P)
where
S: Uniform,
for<'a> P: From<&'a S>,
{
fn generate<R>(rng: &mut R) -> Self
where
R: ::rand::RngCore + ::rand::CryptoRng,
{
let private_key = S::generate(rng);
let public_key = (&private_key).into();
(private_key, public_key)
}
}
impl<Priv, Pub> std::fmt::Debug for KeyPair<Priv, Pub>
where
Priv: Serialize,
Pub: Serialize + for<'a> From<&'a Priv>,
{
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let mut v = bcs::to_bytes(&self.private_key).unwrap();
v.extend(&bcs::to_bytes(&self.public_key).unwrap());
write!(f, "{}", hex::encode(&v[..]))
}
}
#[cfg(any(test, feature = "fuzzing"))]
use crate::signing_message;
#[cfg(any(test, feature = "fuzzing"))]
use curve25519_dalek::constants::EIGHT_TORSION;
#[cfg(any(test, feature = "fuzzing"))]
use curve25519_dalek::edwards::EdwardsPoint;
#[cfg(any(test, feature = "fuzzing"))]
use curve25519_dalek::scalar::Scalar;
#[cfg(any(test, feature = "fuzzing"))]
use curve25519_dalek::traits::Identity;
#[cfg(any(test, feature = "fuzzing"))]
use digest::Digest;
#[cfg(any(test, feature = "fuzzing"))]
use proptest::prelude::*;
use rand::prelude::IteratorRandom;
#[cfg(any(test, feature = "fuzzing"))]
use rand::{rngs::StdRng, SeedableRng};
#[cfg(any(test, feature = "fuzzing"))]
use sha2::Sha512;
#[cfg(any(test, feature = "fuzzing"))]
pub fn uniform_keypair_strategy<Priv, Pub>() -> impl Strategy<Value = KeyPair<Priv, Pub>>
where
Pub: Serialize + for<'a> From<&'a Priv>,
Priv: Serialize + Uniform,
{
any::<[u8; 32]>()
.prop_map(|seed| {
let mut rng = StdRng::from_seed(seed);
KeyPair::<Priv, Pub>::generate(&mut rng)
})
.no_shrink()
}
#[cfg(any(test, feature = "fuzzing"))]
pub fn small_order_strategy() -> impl Strategy<Value = EdwardsPoint> {
(0..EIGHT_TORSION.len())
.prop_map(|exp| {
let generator = EIGHT_TORSION[1];
Scalar::from(exp as u64) * generator
})
.no_shrink()
}
#[allow(non_snake_case)]
#[cfg(any(test, feature = "fuzzing"))]
pub fn small_order_pk_with_adversarial_message(
) -> impl Strategy<Value = (EdwardsPoint, EdwardsPoint, TestAptosCrypto)> {
(
small_order_strategy(),
small_order_strategy(),
random_serializable_struct(),
)
.prop_filter(
"Filtering messages by hash * pk == R",
|(R, pk_point, msg)| {
let pk_bytes = pk_point.compress().to_bytes();
let msg_bytes = signing_message(msg);
let mut h: Sha512 = Sha512::new();
h.update(R.compress().as_bytes());
h.update(pk_bytes);
h.update(&msg_bytes);
let k = Scalar::from_hash(h);
k * pk_point + (*R) == EdwardsPoint::identity()
},
)
}
#[cfg(any(test, feature = "fuzzing"))]
pub fn uniform_keypair_strategy_with_perturbation<Priv, Pub>(
perturbation: u8,
) -> impl Strategy<Value = KeyPair<Priv, Pub>>
where
Pub: Serialize + for<'a> From<&'a Priv>,
Priv: Serialize + Uniform,
{
any::<[u8; 32]>()
.prop_map(move |mut seed| {
for elem in seed.iter_mut() {
*elem = elem.saturating_add(perturbation);
}
let mut rng = StdRng::from_seed(seed);
KeyPair::<Priv, Pub>::generate(&mut rng)
})
.no_shrink()
}
pub fn random_subset<R>(mut rng: &mut R, max_set_size: usize, subset_size: usize) -> Vec<usize>
where
R: ::rand::Rng + ?Sized,
{
let mut vec = (0..max_set_size)
.choose_multiple(&mut rng, subset_size)
.into_iter()
.collect::<Vec<usize>>();
vec.sort_unstable();
vec
}
pub fn random_keypairs<R, PrivKey, PubKey>(
mut rng: &mut R,
num_signers: usize,
) -> Vec<KeyPair<PrivKey, PubKey>>
where
R: ::rand::RngCore + ::rand::CryptoRng,
PubKey: for<'a> std::convert::From<&'a PrivKey>,
PrivKey: Uniform,
{
let mut key_pairs = vec![];
for _ in 0..num_signers {
key_pairs.push(KeyPair::<PrivKey, PubKey>::generate(&mut rng));
}
key_pairs
}
#[cfg(any(test, feature = "fuzzing"))]
#[derive(Debug, Serialize, Deserialize)]
pub struct TestAptosCrypto(pub String);
#[cfg(any(test, feature = "fuzzing"))]
pub struct TestAptosCryptoHasher(crate::hash::DefaultHasher);
#[cfg(any(test, feature = "fuzzing"))]
impl ::core::clone::Clone for TestAptosCryptoHasher {
#[inline]
fn clone(&self) -> TestAptosCryptoHasher {
match *self {
TestAptosCryptoHasher(ref __self_0_0) => {
TestAptosCryptoHasher(::core::clone::Clone::clone(&(*__self_0_0)))
}
}
}
}
#[cfg(any(test, feature = "fuzzing"))]
static TEST_CRYPTO_SEED: crate::_once_cell::sync::OnceCell<[u8; 32]> =
crate::_once_cell::sync::OnceCell::new();
#[cfg(any(test, feature = "fuzzing"))]
impl TestAptosCryptoHasher {
fn new() -> Self {
let name = crate::_serde_name::trace_name::<TestAptosCrypto>()
.expect("The `CryptoHasher` macro only applies to structs and enums");
TestAptosCryptoHasher(crate::hash::DefaultHasher::new(name.as_bytes()))
}
}
#[cfg(any(test, feature = "fuzzing"))]
static TEST_CRYPTO_HASHER: crate::_once_cell::sync::Lazy<TestAptosCryptoHasher> =
crate::_once_cell::sync::Lazy::new(TestAptosCryptoHasher::new);
#[cfg(any(test, feature = "fuzzing"))]
impl std::default::Default for TestAptosCryptoHasher {
fn default() -> Self {
TEST_CRYPTO_HASHER.clone()
}
}
#[cfg(any(test, feature = "fuzzing"))]
impl crate::hash::CryptoHasher for TestAptosCryptoHasher {
fn seed() -> &'static [u8; 32] {
TEST_CRYPTO_SEED.get_or_init(|| {
let name = crate::_serde_name::trace_name::<TestAptosCrypto>()
.expect("The `CryptoHasher` macro only applies to structs and enums.")
.as_bytes();
crate::hash::DefaultHasher::prefixed_hash(name)
})
}
fn update(&mut self, bytes: &[u8]) {
self.0.update(bytes);
}
fn finish(self) -> crate::hash::HashValue {
self.0.finish()
}
}
#[cfg(any(test, feature = "fuzzing"))]
impl std::io::Write for TestAptosCryptoHasher {
fn write(&mut self, bytes: &[u8]) -> std::io::Result<usize> {
self.0.update(bytes);
Ok(bytes.len())
}
fn flush(&mut self) -> std::io::Result<()> {
Ok(())
}
}
#[cfg(any(test, feature = "fuzzing"))]
impl crate::hash::CryptoHash for TestAptosCrypto {
type Hasher = TestAptosCryptoHasher;
fn hash(&self) -> crate::hash::HashValue {
use crate::hash::CryptoHasher;
let mut state = Self::Hasher::default();
bcs::serialize_into(&mut state, &self)
.expect("BCS serialization of TestAptosCrypto should not fail");
state.finish()
}
}
#[cfg(any(test, feature = "fuzzing"))]
pub fn random_serializable_struct() -> impl Strategy<Value = TestAptosCrypto> {
(String::arbitrary()).prop_map(TestAptosCrypto).no_shrink()
}