1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
// Copyright (c) Aptos
// SPDX-License-Identifier: Apache-2.0

//! This module provides APIs for aggregating and verifying BLS multi-signatures
//! implemented on top of BLS12-381 elliptic curves (https://github.com/supranational/blst).
//!
//! The `Signature` struct is used to represent either a signature share from an individual
//! signer or a multisignature aggregated from many such signers.
//!
//! The signature verification APIs in `Signature::verify` and `Signature::verify_arbitrary_msg` do NOT
//! assume the signature to be a valid group element and will implicitly "group-check" it. This
//! makes the caller's job easier and, more importantly, makes the library safer to use.

use crate::{
    bls12381::{
        bls12381_keys::{PrivateKey, PublicKey},
        DST_BLS_MULTISIG_IN_G2_WITH_POP,
    },
    hash::CryptoHash,
    signing_message, traits, CryptoMaterialError, Length, ValidCryptoMaterial,
    ValidCryptoMaterialStringExt,
};
use anyhow::{anyhow, Result};
use aptos_crypto_derive::{DeserializeKey, SerializeKey};
use blst::BLST_ERROR;
use serde::Serialize;
use std::convert::TryFrom;

#[derive(Debug, Clone, Eq, SerializeKey, DeserializeKey)]
/// Either A BLS signature share from an individual signer or a BLS multisignature aggregate from
/// multiple such signers
pub struct Signature {
    pub(crate) sig: blst::min_pk::Signature,
}

////////////////////////////////////////////////
// Implementation of (multi)signature structs //
////////////////////////////////////////////////

impl Signature {
    /// The length of a serialized Signature struct.
    // NOTE: We have to hardcode this here because there is no library-defined constant
    pub const LENGTH: usize = 96;

    /// Serialize a Signature.
    pub fn to_bytes(&self) -> [u8; Self::LENGTH] {
        self.sig.to_bytes()
    }

    /// Group-checks the signature (i.e., verifies the signature is a valid group element).
    /// WARNING: This is called implicitly when verifying the signature in this struct's
    /// `Signature::verify_arbitrary_msg` trait implementation. Therefore, this function should not
    /// be called separately for most use-cases. We leave it here just in case.
    pub fn group_check(&self) -> Result<()> {
        self.sig.validate(true).map_err(|e| anyhow!("{:?}", e))
    }

    /// Optimistically-aggregate multiple signatures. The individual signature shares could be
    /// adversarial. Nonetheless, for performance reasons, we do not group-check the signature shares
    /// here, since the verification of the returned multisignature includes such a group check. As
    /// a result, adversarial signature shares cannot lead to forgeries.
    pub fn aggregate(sigs: Vec<Self>) -> Result<Signature> {
        let sigs: Vec<_> = sigs.iter().map(|s| &s.sig).collect();
        let agg_sig = blst::min_pk::AggregateSignature::aggregate(&sigs[..], false)
            .map_err(|e| anyhow!("{:?}", e))?;
        Ok(Signature {
            sig: agg_sig.to_signature(),
        })
    }
}

///////////////////////////
// SignatureShare Traits //
///////////////////////////
impl traits::Signature for Signature {
    type VerifyingKeyMaterial = PublicKey;
    type SigningKeyMaterial = PrivateKey;

    fn verify<T: CryptoHash + Serialize>(&self, message: &T, public_key: &PublicKey) -> Result<()> {
        self.verify_arbitrary_msg(&signing_message(message), public_key)
    }

    /// Verifies a BLS signature share or multisignature. Does not assume the signature to be
    /// group-checked.
    /// WARNING: This function does assume the public key has been group-checked by the caller
    /// implicitly when verifying the public key's proof-of-possession (PoP) in
    /// `ProofOfPossession::verify`.
    fn verify_arbitrary_msg(&self, message: &[u8], public_key: &PublicKey) -> Result<()> {
        let result = self.sig.verify(
            true,
            message,
            DST_BLS_MULTISIG_IN_G2_WITH_POP,
            &[],
            &public_key.pubkey,
            false,
        );
        if result == BLST_ERROR::BLST_SUCCESS {
            Ok(())
        } else {
            Err(anyhow!("{:?}", result))
        }
    }

    fn to_bytes(&self) -> Vec<u8> {
        self.to_bytes().to_vec()
    }
}

impl ValidCryptoMaterial for Signature {
    fn to_bytes(&self) -> Vec<u8> {
        self.to_bytes().to_vec()
    }
}
impl Length for Signature {
    fn length(&self) -> usize {
        Self::LENGTH
    }
}

impl TryFrom<&[u8]> for Signature {
    type Error = CryptoMaterialError;

    /// Deserializes a Signature from a sequence of bytes.
    /// WARNING: Does NOT group-check the signature! Instead, this will be done implicitly when
    /// verifying the signature.
    fn try_from(bytes: &[u8]) -> std::result::Result<Signature, CryptoMaterialError> {
        Ok(Self {
            sig: blst::min_pk::Signature::from_bytes(bytes)
                .map_err(|_| CryptoMaterialError::DeserializationError)?,
        })
    }
}

impl std::hash::Hash for Signature {
    fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
        let encoded_signature = self.to_bytes();
        state.write(&encoded_signature);
    }
}

// PartialEq trait implementation is required by the std::hash::Hash trait implementation above
impl PartialEq for Signature {
    fn eq(&self, other: &Self) -> bool {
        self.to_bytes()[..] == other.to_bytes()[..]
    }
}