apex_solver/factors/
between_factor.rs

1use super::Factor;
2use crate::manifold::LieGroup;
3use nalgebra::{DMatrix, DVector};
4
5/// Generic between factor for Lie group pose constraints.
6///
7/// Represents a relative pose measurement between two poses of any Lie group manifold type.
8/// This is a generic implementation that works with SE(2), SE(3), SO(2), SO(3), and Rⁿ
9/// using static dispatch for zero runtime overhead.
10///
11/// # Type Parameter
12///
13/// * `T` - The Lie group manifold type (e.g., SE2, SE3, SO2, SO3, Rn)
14///
15/// # Mathematical Formulation
16///
17/// Given two poses `T_i` and `T_j` in a Lie group, and a measurement `T_ij`, the residual is:
18///
19/// ```text
20/// r = log(T_ij⁻¹ ⊕ T_i⁻¹ ⊕ T_j)
21/// ```
22///
23/// where:
24/// - `⊕` is the Lie group composition operation
25/// - `log` is the logarithm map (converts from manifold to tangent space)
26/// - The residual dimensionality depends on the manifold's degrees of freedom (DOF)
27///
28/// # Residual Dimensions by Manifold Type
29///
30/// - **SE(3)**: 6D residual `[v_x, v_y, v_z, ω_x, ω_y, ω_z]` - translation + rotation
31/// - **SE(2)**: 3D residual `[dx, dy, dθ]` - 2D translation + rotation
32/// - **SO(3)**: 3D residual `[ω_x, ω_y, ω_z]` - 3D rotation only
33/// - **SO(2)**: 1D residual `[dθ]` - 2D rotation only
34/// - **Rⁿ**: nD residual - Euclidean space
35///
36/// # Jacobian Computation
37///
38/// The Jacobian is computed analytically using the chain rule and Lie group derivatives:
39///
40/// ```text
41/// J = ∂r/∂[T_i, T_j]
42/// ```
43///
44/// The Jacobian dimensions are `DOF × (2 × DOF)` where DOF is the manifold's degrees of freedom:
45/// - **SE(3)**: 6×12 matrix
46/// - **SE(2)**: 3×6 matrix
47/// - **SO(3)**: 3×6 matrix
48/// - **SO(2)**: 1×2 matrix
49///
50/// # Use Cases
51///
52/// - **3D SLAM**: Visual odometry, loop closure constraints (SE3)
53/// - **2D SLAM**: Robot navigation, mapping (SE2)
54/// - **Pose graph optimization**: Relative pose constraints (SE2, SE3)
55/// - **Orientation tracking**: IMU fusion, attitude estimation (SO2, SO3)
56/// - **General manifold optimization**: Custom manifolds (Rⁿ)
57///
58/// # Examples
59///
60/// ## SE(3) - 3D Pose Graph
61///
62/// ```
63/// use apex_solver::factors::{Factor, BetweenFactor};
64/// use apex_solver::manifold::se3::SE3;
65/// use nalgebra::{Vector3, Quaternion, DVector};
66///
67/// // Measurement: relative 3D transformation between two poses
68/// let relative_pose = SE3::from_translation_quaternion(
69///     Vector3::new(1.0, 0.0, 0.0),        // 1m forward
70///     Quaternion::new(1.0, 0.0, 0.0, 0.0) // No rotation
71/// );
72/// let between = BetweenFactor::new(relative_pose);
73///
74/// // Current pose estimates (in [tx, ty, tz, qw, qx, qy, qz] format)
75/// let pose_i = DVector::from_vec(vec![0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0]);
76/// let pose_j = DVector::from_vec(vec![0.95, 0.05, 0.0, 1.0, 0.0, 0.0, 0.0]);
77///
78/// // Compute residual (dimension 6) and Jacobian (6×12)
79/// let (residual, jacobian) = between.linearize(&[pose_i, pose_j], true);
80/// ```
81///
82/// ## SE(2) - 2D Pose Graph
83///
84/// ```
85/// use apex_solver::factors::{Factor, BetweenFactor};
86/// use apex_solver::manifold::se2::SE2;
87/// use nalgebra::DVector;
88///
89/// // Measurement: robot moved 1m forward and rotated 0.1 rad
90/// let relative_pose = SE2::from_xy_angle(1.0, 0.0, 0.1);
91/// let between = BetweenFactor::new(relative_pose);
92///
93/// // Current pose estimates (in [x, y, theta] format)
94/// let pose_i = DVector::from_vec(vec![0.0, 0.0, 0.0]);
95/// let pose_j = DVector::from_vec(vec![0.95, 0.05, 0.12]);
96///
97/// // Compute residual (dimension 3) and Jacobian (3×6)
98/// let (residual, jacobian) = between.linearize(&[pose_i, pose_j], true);
99/// ```
100///
101/// # Performance
102///
103/// This generic implementation uses static dispatch (monomorphization), meaning:
104/// - **Zero runtime overhead** compared to type-specific implementations
105/// - Compiler optimizes each instantiation (`BetweenFactor<SE3>`, `BetweenFactor<SE2>`, etc.)
106/// - All type checking happens at compile time
107/// - No dynamic dispatch or virtual function calls
108#[derive(Clone, PartialEq)]
109pub struct BetweenFactor<T>
110where
111    T: LieGroup + Clone + Send + Sync,
112    T::TangentVector: Into<DVector<f64>>,
113{
114    /// The measured relative pose transformation between the two connected poses
115    pub relative_pose: T,
116}
117
118impl<T> BetweenFactor<T>
119where
120    T: LieGroup + Clone + Send + Sync,
121    T::TangentVector: Into<DVector<f64>>,
122{
123    /// Create a new between factor from a relative pose measurement.
124    ///
125    /// This is a generic constructor that works with any Lie group manifold type.
126    /// The type parameter `T` is typically inferred from the `relative_pose` argument.
127    ///
128    /// # Arguments
129    ///
130    /// * `relative_pose` - The measured relative transformation between two poses
131    ///
132    /// # Returns
133    ///
134    /// A new `BetweenFactor<T>` instance
135    ///
136    /// # Examples
137    ///
138    /// ## SE(3) Between Factor
139    ///
140    /// ```
141    /// use apex_solver::factors::BetweenFactor;
142    /// use apex_solver::manifold::se3::SE3;
143    ///
144    /// // Create relative pose: move 2m in x, rotate 90° around z-axis
145    /// let relative = SE3::from_translation_euler(
146    ///     2.0, 0.0, 0.0,                      // translation (x, y, z)
147    ///     0.0, 0.0, std::f64::consts::FRAC_PI_2  // rotation (roll, pitch, yaw)
148    /// );
149    ///
150    /// // Type is inferred as BetweenFactor<SE3>
151    /// let factor = BetweenFactor::new(relative);
152    /// ```
153    ///
154    /// ## SE(2) Between Factor
155    ///
156    /// ```
157    /// use apex_solver::factors::BetweenFactor;
158    /// use apex_solver::manifold::se2::SE2;
159    ///
160    /// // Create relative 2D pose
161    /// let relative = SE2::from_xy_angle(1.0, 0.5, 0.1);
162    ///
163    /// // Type is inferred as BetweenFactor<SE2>
164    /// let factor = BetweenFactor::new(relative);
165    /// ```
166    pub fn new(relative_pose: T) -> Self {
167        Self { relative_pose }
168    }
169}
170
171impl<T> Factor for BetweenFactor<T>
172where
173    T: LieGroup + Clone + Send + Sync + From<DVector<f64>>,
174    T::TangentVector: Into<DVector<f64>>,
175{
176    /// Compute residual and Jacobian for a generic between factor.
177    ///
178    /// This method works with any Lie group manifold type, automatically adapting to
179    /// the manifold's degrees of freedom. The residual and Jacobian dimensions are
180    /// determined at runtime based on the manifold type.
181    ///
182    /// # Arguments
183    ///
184    /// * `params` - Two poses as `DVector<f64>` in the manifold's representation format:
185    ///   - **SE(3)**: `[tx, ty, tz, qw, qx, qy, qz]` (7 parameters, 6 DOF)
186    ///   - **SE(2)**: `[x, y, theta]` (3 parameters, 3 DOF)
187    ///   - **SO(3)**: `[qw, qx, qy, qz]` (4 parameters, 3 DOF)
188    ///   - **SO(2)**: `[angle]` (1 parameter, 1 DOF)
189    /// * `compute_jacobian` - Whether to compute the analytical Jacobian matrix
190    ///
191    /// # Returns
192    ///
193    /// A tuple `(residual, jacobian)` where:
194    /// - **Residual**: `DVector<f64>` with dimension = manifold DOF
195    ///   - SE(3): 6×1 vector `[v_x, v_y, v_z, ω_x, ω_y, ω_z]`
196    ///   - SE(2): 3×1 vector `[dx, dy, dθ]`
197    ///   - SO(3): 3×1 vector `[ω_x, ω_y, ω_z]`
198    ///   - SO(2): 1×1 vector `[dθ]`
199    /// - **Jacobian**: `Option<DMatrix<f64>>` with dimension = (DOF, 2×DOF)
200    ///   - SE(3): 6×12 matrix `[∂r/∂pose_i | ∂r/∂pose_j]`
201    ///   - SE(2): 3×6 matrix `[∂r/∂pose_i | ∂r/∂pose_j]`
202    ///   - SO(3): 3×6 matrix `[∂r/∂pose_i | ∂r/∂pose_j]`
203    ///   - SO(2): 1×2 matrix `[∂r/∂pose_i | ∂r/∂pose_j]`
204    ///
205    /// # Algorithm
206    ///
207    /// Uses analytical Jacobians computed via chain rule through three steps:
208    /// 1. **Between**: `T_j.between(T_i) = T_j⁻¹ ⊕ T_i` with Jacobians ∂/∂T_j and ∂/∂T_i
209    /// 2. **Composition**: `(T_j⁻¹ ⊕ T_i) ⊕ T_ij` with Jacobian ∂/∂(T_j⁻¹ ⊕ T_i)
210    /// 3. **Logarithm**: `log(...)` with Jacobian ∂log/∂(...)
211    ///
212    /// The final Jacobian is computed using the chain rule:
213    /// ```text
214    /// J = ∂log/∂diff · ∂diff/∂between · ∂between/∂poses
215    /// ```
216    ///
217    /// This approach reduces the number of matrix operations compared to computing
218    /// inverse and compose separately, resulting in both clearer code and better performance.
219    ///
220    /// # Performance
221    ///
222    /// - **Static dispatch**: All operations are monomorphized at compile time
223    /// - **Zero overhead**: Same performance as type-specific implementations
224    /// - **Parallel-safe**: Marked `Send + Sync` for use in parallel optimization
225    ///
226    /// # Examples
227    ///
228    /// ## SE(3) Linearization
229    ///
230    /// ```
231    /// use apex_solver::factors::{Factor, BetweenFactor};
232    /// use apex_solver::manifold::se3::SE3;
233    /// use nalgebra::DVector;
234    ///
235    /// let relative = SE3::identity();
236    /// let factor = BetweenFactor::new(relative);
237    ///
238    /// let pose_i = DVector::from_vec(vec![0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0]);
239    /// let pose_j = DVector::from_vec(vec![1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0]);
240    ///
241    /// let (residual, jacobian) = factor.linearize(&[pose_i, pose_j], true);
242    /// assert_eq!(residual.len(), 6);  // 6 DOF
243    /// assert!(jacobian.is_some());
244    /// let jac = jacobian.unwrap();
245    /// assert_eq!(jac.nrows(), 6);      // Residual dimension
246    /// assert_eq!(jac.ncols(), 12);     // 2 × DOF
247    /// ```
248    ///
249    /// ## SE(2) Linearization
250    ///
251    /// ```
252    /// use apex_solver::factors::{Factor, BetweenFactor};
253    /// use apex_solver::manifold::se2::SE2;
254    /// use nalgebra::DVector;
255    ///
256    /// let relative = SE2::from_xy_angle(1.0, 0.0, 0.0);
257    /// let factor = BetweenFactor::new(relative);
258    ///
259    /// let pose_i = DVector::from_vec(vec![0.0, 0.0, 0.0]);
260    /// let pose_j = DVector::from_vec(vec![1.0, 0.0, 0.0]);
261    ///
262    /// let (residual, jacobian) = factor.linearize(&[pose_i, pose_j], true);
263    /// assert_eq!(residual.len(), 3);   // 3 DOF
264    /// let jac = jacobian.unwrap();
265    /// assert_eq!(jac.nrows(), 3);      // Residual dimension
266    /// assert_eq!(jac.ncols(), 6);      // 2 × DOF
267    /// ```
268    fn linearize(
269        &self,
270        params: &[DVector<f64>],
271        compute_jacobian: bool,
272    ) -> (DVector<f64>, Option<DMatrix<f64>>) {
273        let se3_origin_k0 = T::from(params[0].clone());
274        let se3_origin_k1 = T::from(params[1].clone());
275        let se3_k0_k1_measured = &self.relative_pose;
276
277        // Step 1: se3_origin_k1.between(se3_origin_k0) = k1⁻¹ * k0
278        let mut j_k1_k0_wrt_k1 = T::zero_jacobian();
279        let mut j_k1_k0_wrt_k0 = T::zero_jacobian();
280        let se3_k1_k0 = se3_origin_k1.between(
281            &se3_origin_k0,
282            Some(&mut j_k1_k0_wrt_k1),
283            Some(&mut j_k1_k0_wrt_k0),
284        );
285
286        // Step 2: se3_k1_k0 * se3_k0_k1_measured
287        let mut j_diff_wrt_k1_k0 = T::zero_jacobian();
288        let se3_diff = se3_k1_k0.compose(se3_k0_k1_measured, Some(&mut j_diff_wrt_k1_k0), None);
289
290        // Step 3: se3_diff.log()
291        let mut j_log_wrt_diff = T::zero_jacobian();
292        let residual = se3_diff.log(Some(&mut j_log_wrt_diff));
293
294        let jacobian = if compute_jacobian {
295            // Calculate dimensions dynamically based on manifold DOF
296            let dof = se3_origin_k0.tangent_dim();
297
298            // Chain rule: d(residual)/d(k0) and d(residual)/d(k1)
299            let j_diff_wrt_k0 = j_diff_wrt_k1_k0.clone() * j_k1_k0_wrt_k0;
300            let j_diff_wrt_k1 = j_diff_wrt_k1_k0 * j_k1_k0_wrt_k1;
301
302            let jacobian_wrt_k0 = j_log_wrt_diff.clone() * j_diff_wrt_k0;
303            let jacobian_wrt_k1 = j_log_wrt_diff * j_diff_wrt_k1;
304
305            // Assemble full Jacobian: [∂r/∂pose_i | ∂r/∂pose_j]
306            let mut jacobian = DMatrix::<f64>::zeros(dof, 2 * dof);
307
308            // Copy element-wise from JacobianMatrix to DMatrix
309            // This works for all Matrix types (fixed-size and dynamic)
310            for i in 0..dof {
311                for j in 0..dof {
312                    jacobian[(i, j)] = jacobian_wrt_k0[(i, j)];
313                    jacobian[(i, j + dof)] = jacobian_wrt_k1[(i, j)];
314                }
315            }
316
317            Some(jacobian)
318        } else {
319            None
320        };
321        (residual.into(), jacobian)
322    }
323
324    fn get_dimension(&self) -> usize {
325        self.relative_pose.tangent_dim()
326    }
327}
328
329#[cfg(test)]
330mod tests {
331    use super::*;
332    use crate::manifold::se2::{SE2, SE2Tangent};
333    use crate::manifold::se3::SE3;
334    use crate::manifold::so2::SO2;
335    use crate::manifold::so3::SO3;
336    use nalgebra::{DVector, Quaternion, Vector3};
337
338    const TOLERANCE: f64 = 1e-9;
339    const FD_EPSILON: f64 = 1e-6;
340
341    #[test]
342    fn test_between_factor_se2_identity() {
343        // Test that identity measurement yields zero residual
344        let relative = SE2::identity();
345        let factor = BetweenFactor::new(relative);
346
347        let pose_i = DVector::from_vec(vec![0.0, 0.0, 0.0]);
348        let pose_j = DVector::from_vec(vec![0.0, 0.0, 0.0]);
349
350        let (residual, _) = factor.linearize(&[pose_i, pose_j], false);
351
352        assert_eq!(residual.len(), 3);
353        assert!(
354            residual.norm() < TOLERANCE,
355            "Residual norm: {}",
356            residual.norm()
357        );
358    }
359
360    #[test]
361    fn test_between_factor_se3_identity() {
362        // Test that identity measurement yields zero residual
363        let relative = SE3::identity();
364        let factor = BetweenFactor::new(relative);
365
366        let pose_i = DVector::from_vec(vec![0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0]);
367        let pose_j = DVector::from_vec(vec![0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0]);
368
369        let (residual, _) = factor.linearize(&[pose_i, pose_j], false);
370
371        assert_eq!(residual.len(), 6);
372        assert!(
373            residual.norm() < TOLERANCE,
374            "Residual norm: {}",
375            residual.norm()
376        );
377    }
378
379    #[test]
380    fn test_between_factor_se2_jacobian_numerical() -> Result<(), Box<dyn std::error::Error>> {
381        // Verify Jacobian using finite differences with manifold perturbations
382        let relative = SE2::from_xy_angle(1.0, 0.0, 0.1);
383        let factor = BetweenFactor::new(relative);
384
385        let pose_i = DVector::from_vec(vec![0.0, 0.0, 0.0]);
386        let pose_j = DVector::from_vec(vec![0.95, 0.05, 0.12]);
387
388        let (residual, jacobian_opt) = factor.linearize(&[pose_i.clone(), pose_j.clone()], true);
389        let jacobian = jacobian_opt.ok_or("Jacobian should be Some when compute_jacobians=true")?;
390
391        assert_eq!(jacobian.nrows(), 3);
392        assert_eq!(jacobian.ncols(), 6);
393
394        // Finite difference validation using manifold plus operation
395        let mut jacobian_fd = DMatrix::<f64>::zeros(3, 6);
396        let se2_i = SE2::from(pose_i.clone());
397        let se2_j = SE2::from(pose_j.clone());
398
399        // Perturb pose_i in tangent space
400        for i in 0..3 {
401            let delta = match i {
402                0 => SE2Tangent::new(FD_EPSILON, 0.0, 0.0),
403                1 => SE2Tangent::new(0.0, FD_EPSILON, 0.0),
404                2 => SE2Tangent::new(0.0, 0.0, FD_EPSILON),
405                _ => unreachable!(),
406            };
407            let se2_i_perturbed = se2_i.plus(&delta, None, None);
408            let pose_i_perturbed = DVector::<f64>::from(se2_i_perturbed);
409            let (residual_perturbed, _) =
410                factor.linearize(&[pose_i_perturbed, pose_j.clone()], false);
411
412            for j in 0..3 {
413                jacobian_fd[(j, i)] = (residual_perturbed[j] - residual[j]) / FD_EPSILON;
414            }
415        }
416
417        // Perturb pose_j in tangent space
418        for i in 0..3 {
419            let delta = match i {
420                0 => SE2Tangent::new(FD_EPSILON, 0.0, 0.0),
421                1 => SE2Tangent::new(0.0, FD_EPSILON, 0.0),
422                2 => SE2Tangent::new(0.0, 0.0, FD_EPSILON),
423                _ => unreachable!(),
424            };
425            let se2_j_perturbed = se2_j.plus(&delta, None, None);
426            let pose_j_perturbed = DVector::<f64>::from(se2_j_perturbed);
427            let (residual_perturbed, _) =
428                factor.linearize(&[pose_i.clone(), pose_j_perturbed], false);
429
430            for j in 0..3 {
431                jacobian_fd[(j, i + 3)] = (residual_perturbed[j] - residual[j]) / FD_EPSILON;
432            }
433        }
434
435        let diff_norm = (jacobian - jacobian_fd).norm();
436        assert!(diff_norm < 1e-5, "Jacobian difference norm: {}", diff_norm);
437        Ok(())
438    }
439
440    #[test]
441    fn test_between_factor_se3_jacobian_numerical() -> Result<(), Box<dyn std::error::Error>> {
442        // Verify Jacobian using finite differences for SE3
443        let relative = SE3::from_translation_quaternion(
444            Vector3::new(1.0, 0.0, 0.0),
445            Quaternion::new(1.0, 0.0, 0.0, 0.0),
446        );
447        let factor = BetweenFactor::new(relative);
448
449        let pose_i = DVector::from_vec(vec![0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0]);
450        let pose_j = DVector::from_vec(vec![0.95, 0.05, 0.0, 1.0, 0.0, 0.0, 0.0]);
451
452        let (residual, jacobian_opt) = factor.linearize(&[pose_i.clone(), pose_j.clone()], true);
453        let jacobian = jacobian_opt.ok_or("Jacobian should be Some when compute_jacobians=true")?;
454
455        assert_eq!(jacobian.nrows(), 6);
456        assert_eq!(jacobian.ncols(), 12);
457
458        // Finite difference validation (only check translation part for simplicity)
459        let mut jacobian_fd = DMatrix::<f64>::zeros(6, 12);
460
461        // Perturb pose_i translation
462        for i in 0..3 {
463            let mut pose_i_perturbed = pose_i.clone();
464            pose_i_perturbed[i] += FD_EPSILON;
465            let (residual_perturbed, _) =
466                factor.linearize(&[pose_i_perturbed, pose_j.clone()], false);
467
468            for j in 0..6 {
469                jacobian_fd[(j, i)] = (residual_perturbed[j] - residual[j]) / FD_EPSILON;
470            }
471        }
472
473        // Perturb pose_j translation
474        for i in 0..3 {
475            let mut pose_j_perturbed = pose_j.clone();
476            pose_j_perturbed[i] += FD_EPSILON;
477            let (residual_perturbed, _) =
478                factor.linearize(&[pose_i.clone(), pose_j_perturbed], false);
479
480            for j in 0..6 {
481                jacobian_fd[(j, i + 6)] = (residual_perturbed[j] - residual[j]) / FD_EPSILON;
482            }
483        }
484
485        // Check translation part only (more robust for FD)
486        let diff_norm_trans = (jacobian.columns(0, 3) - jacobian_fd.columns(0, 3)).norm();
487        assert!(
488            diff_norm_trans < 1e-5,
489            "Jacobian difference norm (translation): {}",
490            diff_norm_trans
491        );
492        Ok(())
493    }
494
495    #[test]
496    fn test_between_factor_dimension_se2() -> Result<(), Box<dyn std::error::Error>> {
497        let relative = SE2::from_xy_angle(1.0, 0.5, 0.1);
498        let factor = BetweenFactor::new(relative);
499
500        let pose_i = DVector::from_vec(vec![0.0, 0.0, 0.0]);
501        let pose_j = DVector::from_vec(vec![1.0, 0.0, 0.0]);
502
503        let (residual, jacobian) = factor.linearize(&[pose_i, pose_j], true);
504
505        assert_eq!(residual.len(), 3);
506        assert_eq!(factor.get_dimension(), 3);
507
508        let jac = jacobian.ok_or("Jacobian should be Some when compute_jacobians=true")?;
509        assert_eq!(jac.nrows(), 3);
510        assert_eq!(jac.ncols(), 6);
511        Ok(())
512    }
513
514    #[test]
515    fn test_between_factor_dimension_se3() -> Result<(), Box<dyn std::error::Error>> {
516        let relative = SE3::identity();
517        let factor = BetweenFactor::new(relative);
518
519        let pose_i = DVector::from_vec(vec![0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0]);
520        let pose_j = DVector::from_vec(vec![1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0]);
521
522        let (residual, jacobian) = factor.linearize(&[pose_i, pose_j], true);
523
524        assert_eq!(residual.len(), 6);
525        assert_eq!(factor.get_dimension(), 6);
526
527        let jac = jacobian.ok_or("Jacobian should be Some when compute_jacobians=true")?;
528        assert_eq!(jac.nrows(), 6);
529        assert_eq!(jac.ncols(), 12);
530        Ok(())
531    }
532
533    #[test]
534    fn test_between_factor_so2_so3() -> Result<(), Box<dyn std::error::Error>> {
535        // Test SO2 (rotation-only in 2D)
536        let so2_relative = SO2::from_angle(0.1);
537        let so2_factor = BetweenFactor::new(so2_relative);
538
539        let so2_i = DVector::from_vec(vec![0.0]);
540        let so2_j = DVector::from_vec(vec![0.12]);
541
542        let (residual_so2, jacobian_so2) = so2_factor.linearize(&[so2_i, so2_j], true);
543        assert_eq!(residual_so2.len(), 1);
544        assert_eq!(so2_factor.get_dimension(), 1);
545
546        let jac_so2 = jacobian_so2.ok_or("Jacobian should be Some when compute_jacobians=true")?;
547        assert_eq!(jac_so2.nrows(), 1);
548        assert_eq!(jac_so2.ncols(), 2);
549
550        // Test SO3 (rotation-only in 3D)
551        let so3_relative = SO3::identity();
552        let so3_factor = BetweenFactor::new(so3_relative);
553
554        let so3_i = DVector::from_vec(vec![1.0, 0.0, 0.0, 0.0]);
555        let so3_j = DVector::from_vec(vec![1.0, 0.0, 0.0, 0.0]);
556
557        let (residual_so3, jacobian_so3) = so3_factor.linearize(&[so3_i, so3_j], true);
558        assert_eq!(residual_so3.len(), 3);
559        assert_eq!(so3_factor.get_dimension(), 3);
560
561        let jac_so3 = jacobian_so3.ok_or("Jacobian should be Some when compute_jacobians=true")?;
562        assert_eq!(jac_so3.nrows(), 3);
563        assert_eq!(jac_so3.ncols(), 6);
564        Ok(())
565    }
566
567    #[test]
568    fn test_between_factor_finiteness() -> Result<(), Box<dyn std::error::Error>> {
569        // Test numerical stability with various inputs
570        let relative = SE2::from_xy_angle(100.0, -200.0, std::f64::consts::PI);
571        let factor = BetweenFactor::new(relative);
572
573        let pose_i = DVector::from_vec(vec![50.0, -100.0, 1.5]);
574        let pose_j = DVector::from_vec(vec![150.0, -300.0, -1.5]);
575
576        let (residual, jacobian) = factor.linearize(&[pose_i, pose_j], true);
577
578        assert!(residual.iter().all(|&x| x.is_finite()));
579        let jac = jacobian.ok_or("Jacobian should be Some when compute_jacobians=true")?;
580        assert!(jac.iter().all(|&x| x.is_finite()));
581        Ok(())
582    }
583
584    #[test]
585    fn test_between_factor_clone() {
586        let relative = SE3::identity();
587        let factor = BetweenFactor::new(relative);
588        let factor_clone = factor.clone();
589
590        let pose_i = DVector::from_vec(vec![0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0]);
591        let pose_j = DVector::from_vec(vec![1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0]);
592
593        let (residual1, _) = factor.linearize(&[pose_i.clone(), pose_j.clone()], false);
594        let (residual2, _) = factor_clone.linearize(&[pose_i, pose_j], false);
595
596        assert!((residual1 - residual2).norm() < TOLERANCE);
597    }
598}