1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Logic handling reading from Avro format at user level.
use crate::{
    decode::{decode, decode_internal},
    from_value,
    rabin::Rabin,
    schema::{AvroSchema, Names, ResolvedOwnedSchema, ResolvedSchema, Schema},
    types::Value,
    util, AvroResult, Codec, Error,
};
use serde::de::DeserializeOwned;
use serde_json::from_slice;
use std::{
    collections::HashMap,
    convert::TryFrom,
    io::{ErrorKind, Read},
    marker::PhantomData,
    str::FromStr,
};

/// Internal Block reader.
#[derive(Debug, Clone)]
struct Block<'r, R> {
    reader: R,
    /// Internal buffering to reduce allocation.
    buf: Vec<u8>,
    buf_idx: usize,
    /// Number of elements expected to exist within this block.
    message_count: usize,
    marker: [u8; 16],
    codec: Codec,
    writer_schema: Schema,
    schemata: Vec<&'r Schema>,
    user_metadata: HashMap<String, Vec<u8>>,
}

impl<'r, R: Read> Block<'r, R> {
    fn new(reader: R, schemata: Vec<&'r Schema>) -> AvroResult<Block<R>> {
        let mut block = Block {
            reader,
            codec: Codec::Null,
            writer_schema: Schema::Null,
            schemata,
            buf: vec![],
            buf_idx: 0,
            message_count: 0,
            marker: [0; 16],
            user_metadata: Default::default(),
        };

        block.read_header()?;
        Ok(block)
    }

    /// Try to read the header and to set the writer `Schema`, the `Codec` and the marker based on
    /// its content.
    fn read_header(&mut self) -> AvroResult<()> {
        let meta_schema = Schema::Map(Box::new(Schema::Bytes));

        let mut buf = [0u8; 4];
        self.reader
            .read_exact(&mut buf)
            .map_err(Error::ReadHeader)?;

        if buf != [b'O', b'b', b'j', 1u8] {
            return Err(Error::HeaderMagic);
        }

        if let Value::Map(metadata) = decode(&meta_schema, &mut self.reader)? {
            self.read_writer_schema(&metadata)?;
            self.codec = read_codec(&metadata)?;

            for (key, value) in metadata {
                if key == "avro.schema" || key == "avro.codec" {
                    // already processed
                } else if key.starts_with("avro.") {
                    warn!("Ignoring unknown metadata key: {}", key);
                } else {
                    self.read_user_metadata(key, value);
                }
            }
        } else {
            return Err(Error::GetHeaderMetadata);
        }

        self.reader
            .read_exact(&mut self.marker)
            .map_err(Error::ReadMarker)
    }

    fn fill_buf(&mut self, n: usize) -> AvroResult<()> {
        // The buffer needs to contain exactly `n` elements, otherwise codecs will potentially read
        // invalid bytes.
        //
        // The are two cases to handle here:
        //
        // 1. `n > self.buf.len()`:
        //    In this case we call `Vec::resize`, which guarantees that `self.buf.len() == n`.
        // 2. `n < self.buf.len()`:
        //    We need to resize to ensure that the buffer len is safe to read `n` elements.
        //
        // TODO: Figure out a way to avoid having to truncate for the second case.
        self.buf.resize(util::safe_len(n)?, 0);
        self.reader
            .read_exact(&mut self.buf)
            .map_err(Error::ReadIntoBuf)?;
        self.buf_idx = 0;
        Ok(())
    }

    /// Try to read a data block, also performing schema resolution for the objects contained in
    /// the block. The objects are stored in an internal buffer to the `Reader`.
    fn read_block_next(&mut self) -> AvroResult<()> {
        assert!(self.is_empty(), "Expected self to be empty!");
        match util::read_long(&mut self.reader) {
            Ok(block_len) => {
                self.message_count = block_len as usize;
                let block_bytes = util::read_long(&mut self.reader)?;
                self.fill_buf(block_bytes as usize)?;
                let mut marker = [0u8; 16];
                self.reader
                    .read_exact(&mut marker)
                    .map_err(Error::ReadBlockMarker)?;

                if marker != self.marker {
                    return Err(Error::GetBlockMarker);
                }

                // NOTE (JAB): This doesn't fit this Reader pattern very well.
                // `self.buf` is a growable buffer that is reused as the reader is iterated.
                // For non `Codec::Null` variants, `decompress` will allocate a new `Vec`
                // and replace `buf` with the new one, instead of reusing the same buffer.
                // We can address this by using some "limited read" type to decode directly
                // into the buffer. But this is fine, for now.
                self.codec.decompress(&mut self.buf)
            }
            Err(Error::ReadVariableIntegerBytes(io_err)) => {
                if let ErrorKind::UnexpectedEof = io_err.kind() {
                    // to not return any error in case we only finished to read cleanly from the stream
                    Ok(())
                } else {
                    Err(Error::ReadVariableIntegerBytes(io_err))
                }
            }
            Err(e) => Err(e),
        }
    }

    fn len(&self) -> usize {
        self.message_count
    }

    fn is_empty(&self) -> bool {
        self.len() == 0
    }

    fn read_next(&mut self, read_schema: Option<&Schema>) -> AvroResult<Option<Value>> {
        if self.is_empty() {
            self.read_block_next()?;
            if self.is_empty() {
                return Ok(None);
            }
        }

        let mut block_bytes = &self.buf[self.buf_idx..];
        let b_original = block_bytes.len();
        let schemata = if self.schemata.is_empty() {
            vec![&self.writer_schema]
        } else {
            self.schemata.clone()
        };
        let item =
            from_avro_datum_schemata(&self.writer_schema, schemata, &mut block_bytes, read_schema)?;
        if b_original == block_bytes.len() {
            // from_avro_datum did not consume any bytes, so return an error to avoid an infinite loop
            return Err(Error::ReadBlock);
        }
        self.buf_idx += b_original - block_bytes.len();
        self.message_count -= 1;
        Ok(Some(item))
    }

    fn read_writer_schema(&mut self, metadata: &HashMap<String, Value>) -> AvroResult<()> {
        let json: serde_json::Value = metadata
            .get("avro.schema")
            .and_then(|bytes| {
                if let Value::Bytes(ref bytes) = *bytes {
                    from_slice(bytes.as_ref()).ok()
                } else {
                    None
                }
            })
            .ok_or(Error::GetAvroSchemaFromMap)?;
        if !self.schemata.is_empty() {
            let rs = ResolvedSchema::try_from(self.schemata.clone())?;
            let names: Names = rs
                .get_names()
                .iter()
                .map(|(name, schema)| (name.clone(), (*schema).clone()))
                .collect();
            self.writer_schema = Schema::parse_with_names(&json, names)?;
        } else {
            self.writer_schema = Schema::parse(&json)?;
        }
        Ok(())
    }

    fn read_user_metadata(&mut self, key: String, value: Value) {
        match value {
            Value::Bytes(ref vec) => {
                self.user_metadata.insert(key, vec.clone());
            }
            wrong => {
                warn!(
                    "User metadata values must be Value::Bytes, found {:?}",
                    wrong
                );
            }
        }
    }
}

fn read_codec(metadata: &HashMap<String, Value>) -> AvroResult<Codec> {
    let result = metadata
        .get("avro.codec")
        .map(|codec| {
            if let Value::Bytes(ref bytes) = *codec {
                match std::str::from_utf8(bytes.as_ref()) {
                    Ok(utf8) => Ok(utf8),
                    Err(utf8_error) => Err(Error::ConvertToUtf8Error(utf8_error)),
                }
            } else {
                Err(Error::BadCodecMetadata)
            }
        })
        .map(|codec_res| match codec_res {
            Ok(codec) => match Codec::from_str(codec) {
                Ok(codec) => Ok(codec),
                Err(_) => Err(Error::CodecNotSupported(codec.to_owned())),
            },
            Err(err) => Err(err),
        });

    match result {
        Some(res) => res,
        None => Ok(Codec::Null),
    }
}

/// Main interface for reading Avro formatted values.
///
/// To be used as an iterator:
///
/// ```no_run
/// # use apache_avro::Reader;
/// # use std::io::Cursor;
/// # let input = Cursor::new(Vec::<u8>::new());
/// for value in Reader::new(input).unwrap() {
///     match value {
///         Ok(v) => println!("{:?}", v),
///         Err(e) => println!("Error: {}", e),
///     };
/// }
/// ```
pub struct Reader<'a, R> {
    block: Block<'a, R>,
    reader_schema: Option<&'a Schema>,
    errored: bool,
    should_resolve_schema: bool,
}

impl<'a, R: Read> Reader<'a, R> {
    /// Creates a `Reader` given something implementing the `io::Read` trait to read from.
    /// No reader `Schema` will be set.
    ///
    /// **NOTE** The avro header is going to be read automatically upon creation of the `Reader`.
    pub fn new(reader: R) -> AvroResult<Reader<'a, R>> {
        let block = Block::new(reader, vec![])?;
        let reader = Reader {
            block,
            reader_schema: None,
            errored: false,
            should_resolve_schema: false,
        };
        Ok(reader)
    }

    /// Creates a `Reader` given a reader `Schema` and something implementing the `io::Read` trait
    /// to read from.
    ///
    /// **NOTE** The avro header is going to be read automatically upon creation of the `Reader`.
    pub fn with_schema(schema: &'a Schema, reader: R) -> AvroResult<Reader<'a, R>> {
        let block = Block::new(reader, vec![schema])?;
        let mut reader = Reader {
            block,
            reader_schema: Some(schema),
            errored: false,
            should_resolve_schema: false,
        };
        // Check if the reader and writer schemas disagree.
        reader.should_resolve_schema = reader.writer_schema() != schema;
        Ok(reader)
    }

    /// Creates a `Reader` given a reader `Schema` and something implementing the `io::Read` trait
    /// to read from.
    ///
    /// **NOTE** The avro header is going to be read automatically upon creation of the `Reader`.
    pub fn with_schemata(
        schema: &'a Schema,
        schemata: Vec<&'a Schema>,
        reader: R,
    ) -> AvroResult<Reader<'a, R>> {
        let block = Block::new(reader, schemata)?;
        let mut reader = Reader {
            block,
            reader_schema: Some(schema),
            errored: false,
            should_resolve_schema: false,
        };
        // Check if the reader and writer schemas disagree.
        reader.should_resolve_schema = reader.writer_schema() != schema;
        Ok(reader)
    }

    /// Get a reference to the writer `Schema`.
    #[inline]
    pub fn writer_schema(&self) -> &Schema {
        &self.block.writer_schema
    }

    /// Get a reference to the optional reader `Schema`.
    #[inline]
    pub fn reader_schema(&self) -> Option<&Schema> {
        self.reader_schema
    }

    /// Get a reference to the user metadata
    #[inline]
    pub fn user_metadata(&self) -> &HashMap<String, Vec<u8>> {
        &self.block.user_metadata
    }

    #[inline]
    fn read_next(&mut self) -> AvroResult<Option<Value>> {
        let read_schema = if self.should_resolve_schema {
            self.reader_schema
        } else {
            None
        };

        self.block.read_next(read_schema)
    }
}

impl<'a, R: Read> Iterator for Reader<'a, R> {
    type Item = AvroResult<Value>;

    fn next(&mut self) -> Option<Self::Item> {
        // to prevent keep on reading after the first error occurs
        if self.errored {
            return None;
        };
        match self.read_next() {
            Ok(opt) => opt.map(Ok),
            Err(e) => {
                self.errored = true;
                Some(Err(e))
            }
        }
    }
}

/// Decode a `Value` encoded in Avro format given its `Schema` and anything implementing `io::Read`
/// to read from.
///
/// In case a reader `Schema` is provided, schema resolution will also be performed.
///
/// **NOTE** This function has a quite small niche of usage and does NOT take care of reading the
/// header and consecutive data blocks; use [`Reader`](struct.Reader.html) if you don't know what
/// you are doing, instead.
pub fn from_avro_datum<R: Read>(
    writer_schema: &Schema,
    reader: &mut R,
    reader_schema: Option<&Schema>,
) -> AvroResult<Value> {
    let value = decode(writer_schema, reader)?;
    match reader_schema {
        Some(schema) => value.resolve(schema),
        None => Ok(value),
    }
}

/// Decode a `Value` encoded in Avro format given the provided `Schema` and anything implementing `io::Read`
/// to read from.
/// If the writer schema is incomplete, i.e. contains `Schema::Ref`s then it will use the provided
/// schemata to resolve any dependencies.
///
/// In case a reader `Schema` is provided, schema resolution will also be performed.
pub fn from_avro_datum_schemata<R: Read>(
    writer_schema: &Schema,
    schemata: Vec<&Schema>,
    reader: &mut R,
    reader_schema: Option<&Schema>,
) -> AvroResult<Value> {
    let rs = ResolvedSchema::try_from(schemata)?;
    let value = decode_internal(writer_schema, rs.get_names(), &None, reader)?;
    match reader_schema {
        Some(schema) => value.resolve(schema),
        None => Ok(value),
    }
}

pub struct GenericSingleObjectReader {
    write_schema: ResolvedOwnedSchema,
    expected_header: [u8; 10],
}

impl GenericSingleObjectReader {
    pub fn new(schema: Schema) -> AvroResult<GenericSingleObjectReader> {
        let fingerprint = schema.fingerprint::<Rabin>();
        let expected_header = [
            0xC3,
            0x01,
            fingerprint.bytes[0],
            fingerprint.bytes[1],
            fingerprint.bytes[2],
            fingerprint.bytes[3],
            fingerprint.bytes[4],
            fingerprint.bytes[5],
            fingerprint.bytes[6],
            fingerprint.bytes[7],
        ];
        Ok(GenericSingleObjectReader {
            write_schema: ResolvedOwnedSchema::try_from(schema)?,
            expected_header,
        })
    }

    pub fn read_value<R: Read>(&self, reader: &mut R) -> AvroResult<Value> {
        let mut header: [u8; 10] = [0; 10];
        match reader.read_exact(&mut header) {
            Ok(_) => {
                if self.expected_header == header {
                    decode_internal(
                        self.write_schema.get_root_schema(),
                        self.write_schema.get_names(),
                        &None,
                        reader,
                    )
                } else {
                    Err(Error::SingleObjectHeaderMismatch(
                        self.expected_header,
                        header,
                    ))
                }
            }
            Err(io_error) => Err(Error::ReadHeader(io_error)),
        }
    }
}

pub struct SpecificSingleObjectReader<T>
where
    T: AvroSchema,
{
    inner: GenericSingleObjectReader,
    _model: PhantomData<T>,
}

impl<T> SpecificSingleObjectReader<T>
where
    T: AvroSchema,
{
    pub fn new() -> AvroResult<SpecificSingleObjectReader<T>> {
        Ok(SpecificSingleObjectReader {
            inner: GenericSingleObjectReader::new(T::get_schema())?,
            _model: PhantomData,
        })
    }
}

impl<T> SpecificSingleObjectReader<T>
where
    T: AvroSchema + From<Value>,
{
    pub fn read_from_value<R: Read>(&self, reader: &mut R) -> AvroResult<T> {
        self.inner.read_value(reader).map(|v| v.into())
    }
}

impl<T> SpecificSingleObjectReader<T>
where
    T: AvroSchema + DeserializeOwned,
{
    pub fn read<R: Read>(&self, reader: &mut R) -> AvroResult<T> {
        from_value::<T>(&self.inner.read_value(reader)?)
    }
}

/// Reads the marker bytes from Avro bytes generated earlier by a `Writer`
pub fn read_marker(bytes: &[u8]) -> [u8; 16] {
    assert!(
        bytes.len() > 16,
        "The bytes are too short to read a marker from them"
    );
    let mut marker = [0_u8; 16];
    marker.clone_from_slice(&bytes[(bytes.len() - 16)..]);
    marker
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::{encode::encode, from_value, types::Record, Reader};
    use apache_avro_test_helper::TestResult;
    use pretty_assertions::assert_eq;
    use serde::Deserialize;
    use std::io::Cursor;

    const SCHEMA: &str = r#"
    {
      "type": "record",
      "name": "test",
      "fields": [
        {
          "name": "a",
          "type": "long",
          "default": 42
        },
        {
          "name": "b",
          "type": "string"
        }
      ]
    }
    "#;
    const UNION_SCHEMA: &str = r#"["null", "long"]"#;
    const ENCODED: &[u8] = &[
        79u8, 98u8, 106u8, 1u8, 4u8, 22u8, 97u8, 118u8, 114u8, 111u8, 46u8, 115u8, 99u8, 104u8,
        101u8, 109u8, 97u8, 222u8, 1u8, 123u8, 34u8, 116u8, 121u8, 112u8, 101u8, 34u8, 58u8, 34u8,
        114u8, 101u8, 99u8, 111u8, 114u8, 100u8, 34u8, 44u8, 34u8, 110u8, 97u8, 109u8, 101u8, 34u8,
        58u8, 34u8, 116u8, 101u8, 115u8, 116u8, 34u8, 44u8, 34u8, 102u8, 105u8, 101u8, 108u8,
        100u8, 115u8, 34u8, 58u8, 91u8, 123u8, 34u8, 110u8, 97u8, 109u8, 101u8, 34u8, 58u8, 34u8,
        97u8, 34u8, 44u8, 34u8, 116u8, 121u8, 112u8, 101u8, 34u8, 58u8, 34u8, 108u8, 111u8, 110u8,
        103u8, 34u8, 44u8, 34u8, 100u8, 101u8, 102u8, 97u8, 117u8, 108u8, 116u8, 34u8, 58u8, 52u8,
        50u8, 125u8, 44u8, 123u8, 34u8, 110u8, 97u8, 109u8, 101u8, 34u8, 58u8, 34u8, 98u8, 34u8,
        44u8, 34u8, 116u8, 121u8, 112u8, 101u8, 34u8, 58u8, 34u8, 115u8, 116u8, 114u8, 105u8,
        110u8, 103u8, 34u8, 125u8, 93u8, 125u8, 20u8, 97u8, 118u8, 114u8, 111u8, 46u8, 99u8, 111u8,
        100u8, 101u8, 99u8, 8u8, 110u8, 117u8, 108u8, 108u8, 0u8, 94u8, 61u8, 54u8, 221u8, 190u8,
        207u8, 108u8, 180u8, 158u8, 57u8, 114u8, 40u8, 173u8, 199u8, 228u8, 239u8, 4u8, 20u8, 54u8,
        6u8, 102u8, 111u8, 111u8, 84u8, 6u8, 98u8, 97u8, 114u8, 94u8, 61u8, 54u8, 221u8, 190u8,
        207u8, 108u8, 180u8, 158u8, 57u8, 114u8, 40u8, 173u8, 199u8, 228u8, 239u8,
    ];

    #[test]
    fn test_from_avro_datum() -> TestResult {
        let schema = Schema::parse_str(SCHEMA)?;
        let mut encoded: &'static [u8] = &[54, 6, 102, 111, 111];

        let mut record = Record::new(&schema).unwrap();
        record.put("a", 27i64);
        record.put("b", "foo");
        let expected = record.into();

        assert_eq!(from_avro_datum(&schema, &mut encoded, None)?, expected);

        Ok(())
    }

    #[test]
    fn test_from_avro_datum_with_union_to_struct() -> TestResult {
        const TEST_RECORD_SCHEMA_3240: &str = r#"
    {
      "type": "record",
      "name": "test",
      "fields": [
        {
          "name": "a",
          "type": "long",
          "default": 42
        },
        {
          "name": "b",
          "type": "string"
        },
        {
            "name": "a_nullable_array",
            "type": ["null", {"type": "array", "items": {"type": "string"}}],
            "default": null
        },
        {
            "name": "a_nullable_boolean",
            "type": ["null", {"type": "boolean"}],
            "default": null
        },
        {
            "name": "a_nullable_string",
            "type": ["null", {"type": "string"}],
            "default": null
        }
      ]
    }
    "#;
        #[derive(Default, Debug, Deserialize, PartialEq, Eq)]
        struct TestRecord3240 {
            a: i64,
            b: String,
            a_nullable_array: Option<Vec<String>>,
            // we are missing the 'a_nullable_boolean' field to simulate missing keys
            // a_nullable_boolean: Option<bool>,
            a_nullable_string: Option<String>,
        }

        let schema = Schema::parse_str(TEST_RECORD_SCHEMA_3240)?;
        let mut encoded: &'static [u8] = &[54, 6, 102, 111, 111];

        let expected_record: TestRecord3240 = TestRecord3240 {
            a: 27i64,
            b: String::from("foo"),
            a_nullable_array: None,
            a_nullable_string: None,
        };

        let avro_datum = from_avro_datum(&schema, &mut encoded, None)?;
        let parsed_record: TestRecord3240 = match &avro_datum {
            Value::Record(_) => from_value::<TestRecord3240>(&avro_datum)?,
            unexpected => {
                panic!("could not map avro data to struct, found unexpected: {unexpected:?}")
            }
        };

        assert_eq!(parsed_record, expected_record);

        Ok(())
    }

    #[test]
    fn test_null_union() -> TestResult {
        let schema = Schema::parse_str(UNION_SCHEMA)?;
        let mut encoded: &'static [u8] = &[2, 0];

        assert_eq!(
            from_avro_datum(&schema, &mut encoded, None)?,
            Value::Union(1, Box::new(Value::Long(0)))
        );

        Ok(())
    }

    #[test]
    fn test_reader_iterator() -> TestResult {
        let schema = Schema::parse_str(SCHEMA)?;
        let reader = Reader::with_schema(&schema, ENCODED)?;

        let mut record1 = Record::new(&schema).unwrap();
        record1.put("a", 27i64);
        record1.put("b", "foo");

        let mut record2 = Record::new(&schema).unwrap();
        record2.put("a", 42i64);
        record2.put("b", "bar");

        let expected = vec![record1.into(), record2.into()];

        for (i, value) in reader.enumerate() {
            assert_eq!(value?, expected[i]);
        }

        Ok(())
    }

    #[test]
    fn test_reader_invalid_header() -> TestResult {
        let schema = Schema::parse_str(SCHEMA)?;
        let invalid = ENCODED.iter().copied().skip(1).collect::<Vec<u8>>();
        assert!(Reader::with_schema(&schema, &invalid[..]).is_err());

        Ok(())
    }

    #[test]
    fn test_reader_invalid_block() -> TestResult {
        let schema = Schema::parse_str(SCHEMA)?;
        let invalid = ENCODED
            .iter()
            .copied()
            .rev()
            .skip(19)
            .collect::<Vec<u8>>()
            .into_iter()
            .rev()
            .collect::<Vec<u8>>();
        let reader = Reader::with_schema(&schema, &invalid[..])?;
        for value in reader {
            assert!(value.is_err());
        }

        Ok(())
    }

    #[test]
    fn test_reader_empty_buffer() -> TestResult {
        let empty = Cursor::new(Vec::new());
        assert!(Reader::new(empty).is_err());

        Ok(())
    }

    #[test]
    fn test_reader_only_header() -> TestResult {
        let invalid = ENCODED.iter().copied().take(165).collect::<Vec<u8>>();
        let reader = Reader::new(&invalid[..])?;
        for value in reader {
            assert!(value.is_err());
        }

        Ok(())
    }

    #[test]
    fn test_avro_3405_read_user_metadata_success() -> TestResult {
        use crate::writer::Writer;

        let schema = Schema::parse_str(SCHEMA)?;
        let mut writer = Writer::new(&schema, Vec::new());

        let mut user_meta_data: HashMap<String, Vec<u8>> = HashMap::new();
        user_meta_data.insert(
            "stringKey".to_string(),
            "stringValue".to_string().into_bytes(),
        );
        user_meta_data.insert("bytesKey".to_string(), b"bytesValue".to_vec());
        user_meta_data.insert("vecKey".to_string(), vec![1, 2, 3]);

        for (k, v) in user_meta_data.iter() {
            writer.add_user_metadata(k.to_string(), v)?;
        }

        let mut record = Record::new(&schema).unwrap();
        record.put("a", 27i64);
        record.put("b", "foo");

        writer.append(record.clone())?;
        writer.append(record.clone())?;
        writer.flush()?;
        let result = writer.into_inner()?;

        let reader = Reader::new(&result[..])?;
        assert_eq!(reader.user_metadata(), &user_meta_data);

        Ok(())
    }

    #[derive(Deserialize, Clone, PartialEq, Debug)]
    struct TestSingleObjectReader {
        a: i64,
        b: f64,
        c: Vec<String>,
    }

    impl AvroSchema for TestSingleObjectReader {
        fn get_schema() -> Schema {
            let schema = r#"
            {
                "type":"record",
                "name":"TestSingleObjectWrtierSerialize",
                "fields":[
                    {
                        "name":"a",
                        "type":"long"
                    },
                    {
                        "name":"b",
                        "type":"double"
                    },
                    {
                        "name":"c",
                        "type":{
                            "type":"array",
                            "items":"string"
                        }
                    }
                ]
            }
            "#;
            Schema::parse_str(schema).unwrap()
        }
    }

    impl From<Value> for TestSingleObjectReader {
        fn from(obj: Value) -> TestSingleObjectReader {
            if let Value::Record(fields) = obj {
                let mut a = None;
                let mut b = None;
                let mut c = vec![];
                for (field_name, v) in fields {
                    match (field_name.as_str(), v) {
                        ("a", Value::Long(i)) => a = Some(i),
                        ("b", Value::Double(d)) => b = Some(d),
                        ("c", Value::Array(v)) => {
                            for inner_val in v {
                                if let Value::String(s) = inner_val {
                                    c.push(s);
                                }
                            }
                        }
                        (key, value) => panic!("Unexpected pair: {key:?} -> {value:?}"),
                    }
                }
                TestSingleObjectReader {
                    a: a.unwrap(),
                    b: b.unwrap(),
                    c,
                }
            } else {
                panic!("Expected a Value::Record but was {obj:?}")
            }
        }
    }

    impl From<TestSingleObjectReader> for Value {
        fn from(obj: TestSingleObjectReader) -> Value {
            Value::Record(vec![
                ("a".into(), obj.a.into()),
                ("b".into(), obj.b.into()),
                (
                    "c".into(),
                    Value::Array(obj.c.into_iter().map(|s| s.into()).collect()),
                ),
            ])
        }
    }

    #[test]
    fn test_avro_3507_single_object_reader() -> TestResult {
        let obj = TestSingleObjectReader {
            a: 42,
            b: 3.33,
            c: vec!["cat".into(), "dog".into()],
        };
        let mut to_read = Vec::<u8>::new();
        to_read.extend_from_slice(&[0xC3, 0x01]);
        to_read.extend_from_slice(
            &TestSingleObjectReader::get_schema()
                .fingerprint::<Rabin>()
                .bytes[..],
        );
        encode(
            &obj.clone().into(),
            &TestSingleObjectReader::get_schema(),
            &mut to_read,
        )
        .expect("Encode should succeed");
        let mut to_read = &to_read[..];
        let generic_reader = GenericSingleObjectReader::new(TestSingleObjectReader::get_schema())
            .expect("Schema should resolve");
        let val = generic_reader
            .read_value(&mut to_read)
            .expect("Should read");
        let expected_value: Value = obj.into();
        assert_eq!(expected_value, val);

        Ok(())
    }

    #[test]
    fn avro_3642_test_single_object_reader_incomplete_reads() -> TestResult {
        let obj = TestSingleObjectReader {
            a: 42,
            b: 3.33,
            c: vec!["cat".into(), "dog".into()],
        };
        // The two-byte marker, to show that the message uses this single-record format
        let to_read_1 = [0xC3, 0x01];
        let mut to_read_2 = Vec::<u8>::new();
        to_read_2.extend_from_slice(
            &TestSingleObjectReader::get_schema()
                .fingerprint::<Rabin>()
                .bytes[..],
        );
        let mut to_read_3 = Vec::<u8>::new();
        encode(
            &obj.clone().into(),
            &TestSingleObjectReader::get_schema(),
            &mut to_read_3,
        )
        .expect("Encode should succeed");
        let mut to_read = (&to_read_1[..]).chain(&to_read_2[..]).chain(&to_read_3[..]);
        let generic_reader = GenericSingleObjectReader::new(TestSingleObjectReader::get_schema())
            .expect("Schema should resolve");
        let val = generic_reader
            .read_value(&mut to_read)
            .expect("Should read");
        let expected_value: Value = obj.into();
        assert_eq!(expected_value, val);

        Ok(())
    }

    #[test]
    fn test_avro_3507_reader_parity() -> TestResult {
        let obj = TestSingleObjectReader {
            a: 42,
            b: 3.33,
            c: vec!["cat".into(), "dog".into()],
        };

        let mut to_read = Vec::<u8>::new();
        to_read.extend_from_slice(&[0xC3, 0x01]);
        to_read.extend_from_slice(
            &TestSingleObjectReader::get_schema()
                .fingerprint::<Rabin>()
                .bytes[..],
        );
        encode(
            &obj.clone().into(),
            &TestSingleObjectReader::get_schema(),
            &mut to_read,
        )
        .expect("Encode should succeed");
        let generic_reader = GenericSingleObjectReader::new(TestSingleObjectReader::get_schema())
            .expect("Schema should resolve");
        let specific_reader = SpecificSingleObjectReader::<TestSingleObjectReader>::new()
            .expect("schema should resolve");
        let mut to_read1 = &to_read[..];
        let mut to_read2 = &to_read[..];
        let mut to_read3 = &to_read[..];

        let val = generic_reader
            .read_value(&mut to_read1)
            .expect("Should read");
        let read_obj1 = specific_reader
            .read_from_value(&mut to_read2)
            .expect("Should read from value");
        let read_obj2 = specific_reader
            .read(&mut to_read3)
            .expect("Should read from deserilize");
        let expected_value: Value = obj.clone().into();
        assert_eq!(obj, read_obj1);
        assert_eq!(obj, read_obj2);
        assert_eq!(val, expected_value);

        Ok(())
    }

    #[cfg(not(feature = "snappy"))]
    #[test]
    fn test_avro_3549_read_not_enabled_codec() {
        let snappy_compressed_avro = vec![
            79, 98, 106, 1, 4, 22, 97, 118, 114, 111, 46, 115, 99, 104, 101, 109, 97, 210, 1, 123,
            34, 102, 105, 101, 108, 100, 115, 34, 58, 91, 123, 34, 110, 97, 109, 101, 34, 58, 34,
            110, 117, 109, 34, 44, 34, 116, 121, 112, 101, 34, 58, 34, 115, 116, 114, 105, 110,
            103, 34, 125, 93, 44, 34, 110, 97, 109, 101, 34, 58, 34, 101, 118, 101, 110, 116, 34,
            44, 34, 110, 97, 109, 101, 115, 112, 97, 99, 101, 34, 58, 34, 101, 120, 97, 109, 112,
            108, 101, 110, 97, 109, 101, 115, 112, 97, 99, 101, 34, 44, 34, 116, 121, 112, 101, 34,
            58, 34, 114, 101, 99, 111, 114, 100, 34, 125, 20, 97, 118, 114, 111, 46, 99, 111, 100,
            101, 99, 12, 115, 110, 97, 112, 112, 121, 0, 213, 209, 241, 208, 200, 110, 164, 47,
            203, 25, 90, 235, 161, 167, 195, 177, 2, 20, 4, 12, 6, 49, 50, 51, 115, 38, 58, 0, 213,
            209, 241, 208, 200, 110, 164, 47, 203, 25, 90, 235, 161, 167, 195, 177,
        ];

        if let Err(err) = Reader::new(snappy_compressed_avro.as_slice()) {
            assert_eq!("Codec 'snappy' is not supported/enabled", err.to_string());
        } else {
            panic!("Expected an error in the reading of the codec!");
        }
    }
}