1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
use crate::{ParseError, ParserOutput, Result};
/// Trait implemented by all parsers.
///
/// This is implemented by the built-in parsers, like `i32`, as well as
/// user-defined parsers created with `parser!`.
///
/// To run a parser, pass some text to [the `parse` method][Parser::parse].
pub trait Parser<'parse, 'source> {
/// The type of value this parser produces from text.
type Output;
/// The type this parser produces internally before converting to the output type.
///
/// Some combinators use the `RawOutput` to determine how types should combine.
/// For example, if `A::RawOutput = ()`, then `A` produces no output;
/// and if `B::RawOutput = (i32,)` then `B` produces an integer;
/// `SequenceParser<A, B>::RawOutput` will then be `(i32,)`, the
/// result of concatenating the two raw tuples, rather than `((), i32)`.
///
/// However, `RawOutput` is very often a singleton tuple, and these are
/// awkward for users, so we convert to the `Output` type before presenting a
/// result to the user.
type RawOutput: ParserOutput<UserType = Self::Output>;
/// The type that implements matching, backtracking, and type conversion
/// for this parser, an implementation detail.
type Iter: ParseIter<RawOutput = Self::RawOutput>;
/// Fully parse the given source string `s` and return the resulting value.
///
/// This is the main way of using a `Parser`.
///
/// This succeeds only if this parser matches the entire input string. It's
/// an error if any unmatched characters are left over at the end of `s`.
fn parse(&'parse self, s: &'source str) -> Result<Self::Output> {
self.parse_raw(s).map(|v| v.into_user_type())
}
/// Produce a [parse iterator][ParseIter]. This is an internal implementation detail of
/// the parser and shouldn't normally be called directly from application code.
fn parse_iter(&'parse self, source: &'source str, start: usize) -> Self::Iter;
/// Like `parse` but produce the output in its [raw form][Self::RawOutput].
fn parse_raw(&'parse self, s: &'source str) -> Result<Self::RawOutput> {
let mut it = self.parse_iter(s, 0);
let mut best_end: Option<usize> = None;
while let Some(parse) = it.next_parse() {
let end = parse?;
if end == s.len() {
return Ok(it.take_data());
} else {
best_end = best_end.max(Some(end));
}
}
if let Some(end) = best_end {
Err(ParseError::new_extra(s, end))
} else {
panic!("parse iterator broke the contract: no matches and no error");
}
}
/// Produce a new parser that behaves like this parser but additionally
/// applies the given closure when producing the value.
///
/// ```
/// use aoc_parse::{parser, prelude::*};
/// let p = u32.map(|x| x * 1_000_001);
/// assert_eq!(p.parse("123").unwrap(), 123_000_123);
/// ```
///
/// This is used to implement the `=>` feature of `parser!`.
///
/// ```
/// # use aoc_parse::{parser, prelude::*};
/// let p = parser!(x: u32 => x * 1_000_001);
/// assert_eq!(p.parse("123").unwrap(), 123_000_123);
/// ```
///
/// The closure is called after the *overall* parse succeeds, as part of
/// turning the parse into Output values. This means the function
/// will not be called during a partly-successful parse that later fails.
///
/// ```
/// # use aoc_parse::{parser, prelude::*};
/// let p = parser!(("A" => panic!()) "B" "C");
/// assert!(p.parse("ABX").is_err());
///
/// let p2 = parser!({
/// (i32 => panic!()) " ft" => 1,
/// i32 " km" => 2,
/// });
/// assert_eq!(p2.parse("37 km").unwrap(), 2);
/// ```
fn map<T, F>(self, mapper: F) -> MapParser<Self, F>
where
Self: Sized,
F: Fn(Self::Output) -> T,
{
MapParser::new(self, mapper)
}
}
impl<'a, 'parse, 'source, P> Parser<'parse, 'source> for &'a P
where
P: Parser<'parse, 'source>,
'a: 'parse + 'source,
{
type Iter = P::Iter;
type Output = P::Output;
type RawOutput = P::RawOutput;
fn parse_iter(&self, source: &'source str, start: usize) -> Self::Iter {
<P as Parser<'parse, 'source>>::parse_iter(self, source, start)
}
}
/// Parse the given puzzle input supplied by `#[aoc_generator]`.
///
/// This function is like `parser.parse(puzzle_input)` except that
/// `#[aoc_generator]` unfortunately [strips off trailing newlines][bad]. This
/// function therefore checks to see if the last line is missing its final `\n`
/// and, if so, re-adds it before parsing.
///
/// # Example
///
/// ```no_run
/// use aoc_runner_derive::*;
/// use aoc_parse::{parser, prelude::*};
///
/// #[aoc_generator(day1)]
/// fn parse_input(text: &str) -> anyhow::Result<Vec<Vec<u64>>> {
/// let p = parser!(repeat_sep(lines(u64), "\n"));
/// aoc_parse(text, p)
/// }
/// ```
///
/// [bad]: https://github.com/gobanos/aoc-runner/blob/master/src/lib.rs#L17
pub fn aoc_parse<P, T, E>(puzzle_input: &str, parser: P) -> std::result::Result<T, E>
where
E: From<ParseError>,
P: for<'p, 's> Parser<'p, 's, Output = T>,
{
let mut p = puzzle_input.to_string();
if !p.ends_with('\n') {
p.push('\n');
}
Ok(parser.parse(&p)?)
}
/// A parser in action. Some parsers can match in several different ways (for
/// example, in `foo* bar` backtracking is accomplished by `foo*` first
/// matching as much as possible, then backing off one match at a time), so
/// this is an iterator.
///
/// This doesn't return a `RawOutput` value from `next_parse` but instead waits
/// until you're sure you have a complete, successful parse, and are thus ready
/// to destroy the iterator. This helps us avoid building values only to drop
/// them later when some downstream parser fails to match, so it makes
/// backtracking faster. It also means we don't call `.map` closures until
/// there is a successful overall match and the values are actually needed.
pub trait ParseIter {
/// The type this iterator can produce on a successful match.
type RawOutput;
/// Try parsing the input.
///
/// The first time this is called, it should return either `Some(Ok(end))`
/// or `Some(Err(err))` indicating that parsing either succeeded or failed.
///
/// Subsequently, it should return either `Some(Ok(end))` or `Some(None)`
/// to indicate that there either is or isn't another, less preferable
/// match.
fn next_parse(&mut self) -> Option<Result<usize>>;
/// Consume this iterator to extract data. This is called only after a
/// successful `next_parse` call that returns `Some(Ok(offset))`.
///
/// This would take `self` by value, except that's not compatible with
/// trait objects. (`Box<Self>` is, so this could change someday.)
fn take_data(&mut self) -> Self::RawOutput;
}
mod chars;
mod either;
mod empty;
mod exact;
mod lines;
mod map;
mod primitive;
mod regex;
mod repeat;
mod sequence;
mod string;
pub use self::regex::RegexParser;
pub use chars::{alnum, alpha, any_char, digit, digit_bin, digit_hex, lower, upper};
pub use either::{alt, either, AltParser, Either, EitherParser};
pub use empty::{empty, EmptyParser};
pub use exact::{exact, ExactParser};
pub use lines::{line, lines, LineParser};
pub use map::{MapParser, MapRawParser};
pub use primitive::{
bool, i128, i128_bin, i128_hex, i16, i16_bin, i16_hex, i32, i32_bin, i32_hex, i64, i64_bin,
i64_hex, i8, i8_bin, i8_hex, isize, isize_bin, isize_hex, u128, u128_bin, u128_hex, u16,
u16_bin, u16_hex, u32, u32_bin, u32_hex, u64, u64_bin, u64_hex, u8, u8_bin, u8_hex, usize,
usize_bin, usize_hex,
};
pub use repeat::{plus, repeat, repeat_sep, star, RepeatParser};
pub use sequence::{sequence, SequenceParser};
pub use string::StringParser;
// --- Wrappers
pub fn opt<T>(
pattern: impl for<'parse, 'source> Parser<'parse, 'source, Output = T> + 'static,
) -> impl for<'parse, 'source> Parser<'parse, 'source, Output = Option<T>, RawOutput = (Option<T>,)>
{
either(pattern, empty()).map(|e: Either<T, ()>| match e {
Either::Left(left) => Some(left),
Either::Right(()) => None,
})
}
// Make sure that RawOutput is exactly `(T,)`.
//
// Parenthesizing an expression makes a semantic difference to prevent it from
// disappearing in concatenation.
//
// Example 1: In `parser!("hello " (x: i32) => x)` the raw output type of
// `"hello "` is `()` and it disappears when concatenated with `(x: i32)`. Now
// if we label `"hello"` `parser!((a: "hello ") (x: i32) => (a, x))` we have to
// make sure that doesn't happen so that we can build a pattern that matches
// both `a` and `x`.
//
// Example 2: `parser!((i32 " " i32) " " (i32))` should have the output type
// `((i32, i32), i32)`; but conatenating the three top-level RawOutput types,
// `(i32, i32)` `()` and `(i32,)`, would produce the flat `(i32, i32, i32)`
// instead.
//
// It turns out all we need is to ensure the `RawOutput` type of the
// parenthesized parser is a singleton tuple type.
pub fn parenthesize<A, T>(pattern: A) -> MapParser<A, fn(T) -> T>
where
A: for<'parse, 'source> Parser<'parse, 'source, Output = T>,
{
pattern.map(|val| val)
}
#[cfg(test)]
mod tests {
use std::fmt::Debug;
use super::*;
#[track_caller]
fn assert_parse<'s, P>(parser: &'s P, s: &'s str)
where
P: Parser<'s, 's>,
{
if let Err(err) = parser.parse(s) {
panic!("parse failed: {}", err);
}
}
#[track_caller]
fn assert_parse_eq<'s, P, E>(parser: &'s P, s: &'s str, expected: E)
where
P: Parser<'s, 's>,
P::Output: PartialEq<E> + Debug,
E: Debug,
{
match parser.parse(s) {
Err(err) => panic!("parse failed: {}", err),
Ok(val) => assert_eq!(val, expected),
}
}
#[track_caller]
fn assert_no_parse<'s, P>(parser: &'s P, s: &'s str)
where
P: Parser<'s, 's>,
P::Output: Debug,
{
if let Ok(m) = parser.parse(s) {
panic!("expected no match, got: {:?}", m);
}
}
#[test]
fn test_parse() {
let p = empty();
assert_parse_eq(&p, "", ());
assert_no_parse(&p, "x");
let p = exact("ok");
assert_parse(&p, "ok");
assert_no_parse(&p, "");
assert_no_parse(&p, "o");
assert_no_parse(&p, "nok");
let p = sequence(exact("ok"), exact("go"));
assert_parse(&p, "okgo");
assert_no_parse(&p, "ok");
assert_no_parse(&p, "go");
assert_no_parse(&p, "");
let p = either(empty(), exact("ok"));
assert_parse(&p, "");
assert_parse(&p, "ok");
assert_no_parse(&p, "okc");
assert_no_parse(&p, "okok");
let p = star(exact("a"));
assert_parse(&p, "");
assert_parse(&p, "a");
assert_parse(&p, "aa");
assert_parse(&p, "aaa");
assert_no_parse(&p, "b");
assert_no_parse(&p, "ab");
assert_no_parse(&p, "ba");
let p = repeat_sep(exact("cow"), exact(","));
assert_parse(&p, "");
assert_parse(&p, "cow");
assert_parse(&p, "cow,cow");
assert_parse(&p, "cow,cow,cow");
assert_no_parse(&p, "cowcow");
assert_no_parse(&p, "cow,");
assert_no_parse(&p, "cow,,cow");
assert_no_parse(&p, "cow,cow,");
assert_no_parse(&p, ",");
let p = plus(exact("a"));
assert_no_parse(&p, "");
assert_parse(&p, "a");
assert_parse(&p, "aa");
let p = repeat_sep(usize, exact(","));
assert_parse_eq(&p, "11417,0,0,334", vec![11417usize, 0, 0, 334]);
assert_no_parse(&u8, "256");
assert_parse_eq(&u8, "255", 255u8);
assert_parse_eq(&sequence(exact("#"), u32), "#100", 100u32);
assert_parse_eq(
&sequence(exact("forward "), u64).map(|a| a),
"forward 1234",
1234u64,
);
}
}