1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
#![no_std]
#![cfg_attr(miri, feature(alloc_layout_extra) )]
#![cfg_attr(docsrs, feature(doc_cfg))]

//! Type erased vector [`AnyVec`]. Allow to store elements of the same type.
//! Have same performance and *operations* as `std::vec::Vec`.
//!
//! You can downcast type erased [`AnyVec`] to concrete [`AnyVecTyped`] with `downcast`-family.
//! Or use [`AnyVec`] type erased operations, which works with [`any_value`].
//!
//! ```rust
//!     use any_vec::AnyVec;
//!     let mut vec: AnyVec = AnyVec::new::<String>();
//!     {
//!         // Typed operations.
//!         let mut vec = vec.downcast_mut::<String>().unwrap();
//!         vec.push(String::from("0"));
//!         vec.push(String::from("1"));
//!         vec.push(String::from("2"));
//!     }
//!
//!     let mut other_vec: AnyVec = AnyVec::new::<String>();
//!     // Fully type erased element move from one vec to another
//!     // without intermediate mem-copies.
//!     let element = vec.swap_remove(0);
//!     other_vec.push(element);
//!
//!     // Output 2 1
//!     for s in vec.downcast_ref::<String>().unwrap(){
//!         println!("{}", s);
//!     }
//!
//!```
//!
//! N.B. [`AnyVecTyped`] operations may be somewhat faster, due to the fact that
//! compiler able to do better optimisation with full type knowledge.
//!
//! # Send, Sync, Clone
//!
//! You can make [`AnyVec`] [`Send`]able, [`Sync`]able, [`Cloneable`]:
//!
//! [`Cloneable`]: traits::Cloneable
//!
//!```rust
//! use any_vec::AnyVec;
//! use any_vec::traits::*;
//! let v1: AnyVec<dyn Cloneable + Sync + Send> = AnyVec::new::<String>();
//! let v2 = v1.clone();
//! ```
//! This constraints will be applied compiletime to element type:
//!```compile_fail
//! # use any_vec::AnyVec;
//! # use std::rc::Rc;
//! let v1: AnyVec<dyn Sync + Send> = AnyVec::new::<Rc<usize>>();
//!```
//!
//! # LazyClone
//!
//! Whenever possible, [`any_vec`] types implement [`AnyValueCloneable`], which
//! can work with [`LazyClone`]:
//!
//! [`any_vec`]: crate
//! [`AnyValueCloneable`]: any_value::AnyValueCloneable
//! [`LazyClone`]: any_value::LazyClone
//!
//!```rust
//! # use any_vec::any_value::{AnyValueCloneable, AnyValueWrapper};
//! # use any_vec::AnyVec;
//! # use any_vec::traits::*;
//! let mut v1: AnyVec<dyn Cloneable> = AnyVec::new::<String>();
//! v1.push(AnyValueWrapper::new(String::from("0")));
//!
//! let mut v2: AnyVec<dyn Cloneable> = AnyVec::new::<String>();
//! let e = v1.swap_remove(0);
//! v2.push(e.lazy_clone());
//! v2.push(e.lazy_clone());
//! ```
//!
//! # MemBuilder
//!
//! [`MemBuilder`] + [`Mem`] works like [`Allocator`] for [`AnyVec`]. But unlike allocator,
//! [`Mem`] container-specialized design allows to perform more optimizations. For example,
//! it is possible to make stack-allocated `FixedAnyVec` and small-buffer-optimized(SBO) `SmallAnyVec`
//! from `AnyVec` by just changing [`MemBuilder`]:
//!
//!```rust
//! # use any_vec::any_value::AnyValueWrapper;
//! # use any_vec::AnyVec;
//! # use any_vec::mem::Stack;
//! # use any_vec::traits::None;
//!
//! type FixedAnyVec<Traits = dyn None> = AnyVec<Traits, Stack<512>>;
//! let mut any_vec: FixedAnyVec = AnyVec::new::<String>();
//!
//! // This will be on stack, without any allocations.
//! any_vec.push(AnyValueWrapper::new(String::from("0")))
//!```
//!
//! With help of [`clone_empty_in`] you can use stack allocated, or SBO [`AnyVec`]
//! as fast intermediate storage for values of unknown type:
//!
//!```rust
//! # use any_vec::any_value::{AnyValueCloneable, AnyValueWrapper};
//! # use any_vec::AnyVec;
//! # use any_vec::mem::StackN;
//! # use any_vec::traits::*;
//!
//! fn self_push_first_element<T: Trait + Cloneable>(any_vec: &mut AnyVec<T>){
//!    let mut tmp = any_vec.clone_empty_in(StackN::<1, 256>);
//!    tmp.push(any_vec.at(0).lazy_clone());
//!    any_vec.push(tmp.pop().unwrap());
//! }
//!```
//!
//! [`MemBuilder`] interface, being stateful, allow to make [`Mem`],
//! which can work with complex custom allocators.
//!
//! [`MemBuilder`]: mem::MemBuilder
//! [`Mem`]: mem::Mem
//! [`Allocator`]: core::alloc::Allocator
//! [`clone_empty_in`]: AnyVec::clone_empty_in
//!
//! # AnyValue
//!
//! Being type erased, [AnyVec] needs a way to operate on untyped values safely.
//! Instead of working with plain `*mut u8`, [AnyVec] operates with [any_value].
//!
//! [AnyValue] is a trait, that provide operations to work with type erased values.
//! Any type that implements [AnyValue] can be used with [AnyVec].
//! [AnyValue] interface allows to perform postponed operations on consumption.
//! This trick used heavily by [AnyVec] destructive operations, which instead of concrete
//! type return [AnyValue], which perform actual operation on value drop.
//!
//! Implementing [AnyValueMut] and [AnyValueCloneable] makes type mutable and
//! cloneable respectively.
//!
//! [AnyValue]: any_value::AnyValue
//! [AnyValueMut]: any_value::AnyValueMut
//! [AnyValueCloneable]: any_value::AnyValueCloneable
//! 
//! # No `alloc`
//! 
//! This library is `no_std` and can work without `alloc`.
//! For this - disable default `alloc` feature. [mem::Heap] will become unavailable
//! after that, and you'll have to specify [MemBuilder] for [AnyVec]. You can use
//! [mem::Stack], or specify your own [Mem].
//! 
//! [MemBuilder]: mem::MemBuilder
//! [Mem]: mem::Mem

mod any_vec;
mod clone_type;
mod any_vec_ptr;
mod any_vec_raw;
mod any_vec_typed;
mod iter;

use core::any::TypeId;
pub use crate::any_vec::{AnyVec, AnyVecMut, AnyVecRef, RawParts, SatisfyTraits, traits};
pub use any_vec_typed::AnyVecTyped;
pub use iter::{ElementIterator, Iter, IterMut, IterRef};

pub mod mem;
pub mod any_value;
pub mod ops;
pub mod element;

use core::ptr;
use core::ops::{Bound, Range, RangeBounds};
use crate::any_value::Unknown;

/// This is faster then ptr::copy,
/// when count is runtime value, and count is small.
///
/// Last time benchmarked on nightly 1.80
#[inline(always)]
unsafe fn copy_bytes(src: *const u8, dst: *mut u8, count: usize){
    // MIRI hack
    if cfg!(miri)
        || count >= 128
    {
        ptr::copy(src, dst, count);
        return;
    }

    for i in 0..count{
        *dst.add(i) = *src.add(i);
    }
}

/// One element copy_nonoverlapping, that utilize type knowledge.
#[inline(always)]
pub(crate) unsafe fn copy_nonoverlapping_value<KnownType: 'static>(
    input: *const u8, out: *mut u8, value_size: usize
) {
    if !Unknown::is::<KnownType>() {
        ptr::copy_nonoverlapping(
            input as *const KnownType,
            out as *mut KnownType,
            1
        );
    } else {
        ptr::copy_nonoverlapping(
            input,
            out,
            value_size
        );
    }
}

#[inline]
fn into_range(
    len: usize,
    range: impl RangeBounds<usize>
) -> Range<usize> {
    let start = match range.start_bound() {
        Bound::Included(i) => *i,
        Bound::Excluded(i) => *i + 1,
        Bound::Unbounded => 0,
    };
    let end = match range.end_bound() {
        Bound::Included(i) => *i + 1,
        Bound::Excluded(i) => *i,
        Bound::Unbounded => len,
    };
    assert!(start <= end);
    assert!(end <= len);
    start..end
}

#[inline]
fn assert_types_equal(t1: TypeId, t2: TypeId){
    assert_eq!(t1, t2, "Type mismatch!");
}