angle_sc/lib.rs
1// Copyright (c) 2024-2025 Ken Barker
2
3// Permission is hereby granted, free of charge, to any person obtaining a copy
4// of this software and associated documentation files (the "Software"),
5// to deal in the Software without restriction, including without limitation the
6// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
7// sell copies of the Software, and to permit persons to whom the Software is
8// furnished to do so, subject to the following conditions:
9
10// The above copyright notice and this permission notice shall be included in
11// all copies or substantial portions of the Software.
12
13// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
16// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
17// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
18// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
19// THE SOFTWARE.
20
21//! [](https://crates.io/crates/angle-sc)
22//! [](https://docs.rs/angle-sc/)
23//! [](https://opensource.org/license/mit/)
24//! [](https://github.com/kenba/angle-sc-rs/actions)
25//! [](https://codecov.io/gh/kenba/angle-sc-rs)
26//!
27//! A Rust library for performing accurate and efficient trigonometry calculations.
28//!
29//! ## Description
30//!
31//! The standard trigonometry functions: `sin`, `cos`, `tan`, etc.
32//! [give unexpected results for well-known angles](https://stackoverflow.com/questions/31502120/sin-and-cos-give-unexpected-results-for-well-known-angles#answer-31525208).
33//! This is because the functions use parameters with `radians` units instead of `degrees`.
34//! The conversion from `degrees` to `radians` suffers from
35//! [round-off error](https://en.wikipedia.org/wiki/Round-off_error) due to
36//! `radians` being based on the irrational number π.
37//! This library provides a [sincos](src/trig.rs#sincos) function to calculate more
38//! accurate values than the standard `sin` and `cos` functions for angles in radians
39//! and a [sincosd](src/trig.rs#sincosd) function to calculate more accurate values
40//! for angles in degrees.
41//!
42//! The library also provides an [Angle](#angle) struct which represents an angle
43//! by its sine and cosine as the coordinates of a
44//! [unit circle](https://en.wikipedia.org/wiki/Unit_circle),
45//! see *Figure 1*.
46//!
47//! 
48//! *Figure 1 Unit circle formed by cos *θ* and sin *θ**
49//!
50//! The `Angle` struct enables more accurate calculations of angle rotations and
51//! conversions to and from `degrees` or `radians`.
52//!
53//! ## Features
54//!
55//! * `Degrees`, `Radians` and `Angle` types;
56//! * functions for accurately calculating sines and cosines of angles in `Degrees` or `Radians`
57//! using [remquo](https://pubs.opengroup.org/onlinepubs/9699919799/functions/remquo.html);
58//! * functions for accurately calculating sines and cosines of differences of angles in `Degrees` or `Radians`
59//! using the [2Sum](https://en.wikipedia.org/wiki/2Sum) algorithm;
60//! * functions for accurately calculating sums and differences of `Angles` using
61//! [trigonometric identities](https://en.wikipedia.org/wiki/List_of_trigonometric_identities#Angle_sum_and_difference_identities);
62//! * and some [spherical trigonometry](https://en.wikipedia.org/wiki/Spherical_trigonometry) functions.
63//! * The library is declared [no_std](https://docs.rust-embedded.org/book/intro/no-std.html).
64//!
65//! ## Examples
66//!
67//! The following example shows the `round-off error` inherent in calculating angles in `radians`.
68//! It calculates the correct sine and cosine for 60° and converts them back
69//! precisely to 60°, but it fails to convert them to the precise angle in `radians`: π/3.
70//! ```
71//! use angle_sc::{Angle, Degrees, Radians, is_within_tolerance, trig};
72//!
73//! let angle_60 = Angle::from(Degrees(60.0));
74//! assert_eq!(trig::COS_30_DEGREES, angle_60.sin().0);
75//! assert_eq!(0.5, angle_60.cos().0);
76//! assert_eq!(60.0, Degrees::from(angle_60).0);
77//!
78//! // assert_eq!(core::f64::consts::FRAC_PI_3, Radians::from(angle_60).0); // Fails because PI is irrational
79//! assert!(is_within_tolerance(
80//! core::f64::consts::FRAC_PI_3,
81//! Radians::from(angle_60).0,
82//! f64::EPSILON
83//! ));
84//! ```
85//!
86//! The following example calculates the sine and cosine between the difference
87//! of two angles in `degrees`: -155° - 175°.
88//! It is more accurate than calling the `Angle` `From` trait in the example above
89//! with the difference in `degrees`.
90//! It is particularly useful for implementing the
91//! [Haversine formula](https://en.wikipedia.org/wiki/Haversine_formula)
92//! which requires sines and cosines of both longitude and latitude differences.
93//! Note: in this example sine and cosine of 30° are converted precisely to π/6.
94//! ```
95//! use angle_sc::{Angle, Degrees, Radians, trig};
96//!
97//! // Difference of Degrees(-155.0) - Degrees(175.0)
98//! let angle_30 = Angle::from((Degrees(-155.0), Degrees(175.0)));
99//! assert_eq!(0.5, angle_30.sin().0);
100//! assert_eq!(trig::COS_30_DEGREES, angle_30.cos().0);
101//! assert_eq!(30.0, Degrees::from(angle_30).0);
102//! assert_eq!(core::f64::consts::FRAC_PI_6, Radians::from(angle_30).0);
103//! ```
104//!
105//! ## Design
106//!
107//! ### Trigonometry Functions
108//!
109//! The `trig` module contains accurate and efficient trigonometry functions.
110//!
111//! ### Angle
112//!
113//! The `Angle` struct represents an angle by its sine and cosine instead of in
114//! `degrees` or `radians`.
115//!
116//! This representation an angle makes functions such as
117//! rotating an angle +/-90° around the unit circle or calculating the opposite angle;
118//! simple, accurate and efficient since they just involve changing the signs
119//! and/or positions of the `sin` and `cos` values.
120//!
121//! `Angle` `Add` and `Sub` traits are implemented using
122//! [angle sum and difference](https://en.wikipedia.org/wiki/List_of_trigonometric_identities#Angle_sum_and_difference_identities)
123//! trigonometric identities,
124//! while `Angle` [double](https://en.wikipedia.org/wiki/List_of_trigonometric_identities#Double-angle_formulae)
125//! and [half](https://en.wikipedia.org/wiki/List_of_trigonometric_identities#Half-angle_formulae) methods use other
126//! trigonometric identities.
127//!
128//! The `sin` and `cos` fields of `Angle` are `UnitNegRange`s:,
129//! a [newtype](https://rust-unofficial.github.io/patterns/patterns/behavioural/newtype.html)
130//! with values in the range -1.0 to +1.0 inclusive.
131
132#![cfg_attr(not(test), no_std)]
133#![allow(clippy::float_cmp)]
134
135pub mod trig;
136use core::cmp::{Ordering, PartialOrd};
137use core::convert::From;
138use core::ops::{Add, AddAssign, Neg, Sub, SubAssign};
139use serde::{Deserialize, Deserializer, Serialize, Serializer};
140
141/// The Degrees newtype an f64.
142#[derive(Clone, Copy, Debug, PartialEq, Serialize, Deserialize)]
143#[repr(transparent)]
144pub struct Degrees(pub f64);
145
146impl Degrees {
147 /// The absolute value of the angle.
148 #[must_use]
149 pub const fn abs(self) -> Self {
150 Self(self.0.abs())
151 }
152
153 /// Half of the angle.
154 #[must_use]
155 pub fn half(self) -> Self {
156 Self(0.5 * self.0)
157 }
158
159 /// The opposite angle on the circle, i.e. +/- 180 degrees.
160 #[must_use]
161 pub fn opposite(self) -> Self {
162 Self(if self.0 > 0.0 {
163 self.0 - 180.0
164 } else {
165 self.0 + 180.0
166 })
167 }
168}
169
170impl Default for Degrees {
171 fn default() -> Self {
172 Self(0.0)
173 }
174}
175
176impl Neg for Degrees {
177 type Output = Self;
178
179 /// An implementation of Neg for Degrees, i.e. -angle.
180 /// # Examples
181 /// ```
182 /// use angle_sc::Degrees;
183 ///
184 /// let angle_45 = Degrees(45.0);
185 /// let result_m45 = -angle_45;
186 /// assert_eq!(-45.0, result_m45.0);
187 /// ```
188 fn neg(self) -> Self {
189 Self(0.0 - self.0)
190 }
191}
192
193impl Add for Degrees {
194 type Output = Self;
195
196 /// Add a pair of angles in Degrees, wraps around +/-180 degrees.
197 /// Uses the [2Sum](https://en.wikipedia.org/wiki/2Sum) algorithm to reduce
198 /// round-off error.
199 /// # Examples
200 /// ```
201 /// use angle_sc::{Degrees};
202 ///
203 /// let angle_120 = Degrees(120.0);
204 /// let result = angle_120 + angle_120;
205 /// assert_eq!(-angle_120, result);
206 /// ```
207 fn add(self, other: Self) -> Self::Output {
208 let (s, t) = two_sum(self.0, other.0);
209 Self(if s <= -180.0 {
210 s + 360.0 + t
211 } else if s > 180.0 {
212 s - 360.0 + t
213 } else {
214 s
215 })
216 }
217}
218
219impl AddAssign for Degrees {
220 fn add_assign(&mut self, other: Self) {
221 *self = *self + other;
222 }
223}
224
225impl Sub for Degrees {
226 type Output = Self;
227
228 /// Subtract a pair of angles in Degrees, wraps around +/-180 degrees.
229 /// Uses the [2Sum](https://en.wikipedia.org/wiki/2Sum) algorithm to reduce
230 /// round-off error.
231 /// # Examples
232 /// ```
233 /// use angle_sc::{Degrees};
234 ///
235 /// let angle_120 = Degrees(120.0);
236 /// let result = -angle_120 - angle_120;
237 /// assert_eq!(angle_120, result);
238 /// ```
239 fn sub(self, other: Self) -> Self::Output {
240 self + -other
241 }
242}
243
244impl SubAssign for Degrees {
245 fn sub_assign(&mut self, other: Self) {
246 *self = *self - other;
247 }
248}
249
250/// The Radians newtype an f64.
251#[derive(Clone, Copy, Debug, PartialEq, PartialOrd)]
252#[repr(transparent)]
253pub struct Radians(pub f64);
254
255impl Radians {
256 /// The absolute value of the angle.
257 #[must_use]
258 pub const fn abs(self) -> Self {
259 Self(self.0.abs())
260 }
261
262 /// Half of the angle.
263 #[must_use]
264 pub fn half(self) -> Self {
265 Self(0.5 * self.0)
266 }
267
268 /// The opposite angle on the circle, i.e. +/- PI.
269 #[must_use]
270 pub fn opposite(self) -> Self {
271 Self(if self.0 > 0.0 {
272 self.0 - core::f64::consts::PI
273 } else {
274 self.0 + core::f64::consts::PI
275 })
276 }
277
278 /// Clamp value into the range: `0.0..=max_value`.
279 /// # Examples
280 /// ```
281 /// use angle_sc::Radians;
282 ///
283 /// let value = Radians(-f64::EPSILON);
284 /// assert_eq!(Radians(0.0), value.clamp(Radians(1.0)));
285 /// let value = Radians(0.0);
286 /// assert_eq!(Radians(0.0), value.clamp(Radians(1.0)));
287 /// let value = Radians(1.0);
288 /// assert_eq!(Radians(1.0), value.clamp(Radians(1.0)));
289 /// let value = Radians(1.0 + f64::EPSILON);
290 /// assert_eq!(Radians(1.0), value.clamp(Radians(1.0)));
291 /// ```
292 #[must_use]
293 pub const fn clamp(self, max_value: Self) -> Self {
294 Self(self.0.clamp(0.0, max_value.0))
295 }
296}
297
298impl Default for Radians {
299 fn default() -> Self {
300 Self(0.0)
301 }
302}
303
304impl Neg for Radians {
305 type Output = Self;
306
307 /// An implementation of Neg for Radians, i.e. -angle.
308 /// # Examples
309 /// ```
310 /// use angle_sc::Radians;
311 ///
312 /// let angle_45 = Radians(core::f64::consts::FRAC_PI_4);
313 /// let result_m45 = -angle_45;
314 /// assert_eq!(-core::f64::consts::FRAC_PI_4, result_m45.0);
315 /// ```
316 fn neg(self) -> Self {
317 Self(0.0 - self.0)
318 }
319}
320
321impl Add for Radians {
322 type Output = Self;
323
324 /// Add a pair of angles in Radians, wraps around +/-PI.
325 /// Uses the [2Sum](https://en.wikipedia.org/wiki/2Sum) algorithm to reduce
326 /// round-off error.
327 /// # Examples
328 /// ```
329 /// use angle_sc::{Radians, is_within_tolerance};
330 ///
331 /// let angle_120 = Radians(2.0 * core::f64::consts::FRAC_PI_3);
332 /// let result = angle_120 + angle_120;
333 /// assert!(is_within_tolerance(-2.0 * core::f64::consts::FRAC_PI_3, result.0, 4.0 * f64::EPSILON));
334 /// ```
335 fn add(self, other: Self) -> Self::Output {
336 let (s, t) = two_sum(self.0, other.0);
337 Self(if s <= -core::f64::consts::PI {
338 s + core::f64::consts::TAU + t
339 } else if s > core::f64::consts::PI {
340 s - core::f64::consts::TAU + t
341 } else {
342 s
343 })
344 }
345}
346
347impl AddAssign for Radians {
348 fn add_assign(&mut self, other: Self) {
349 *self = *self + other;
350 }
351}
352
353impl Sub for Radians {
354 type Output = Self;
355
356 /// Subtract a pair of angles in Radians, wraps around +/-PI.
357 /// Uses the [2Sum](https://en.wikipedia.org/wiki/2Sum) algorithm to reduce
358 /// round-off error.
359 /// # Examples
360 /// ```
361 /// use angle_sc::{Radians, is_within_tolerance};
362 ///
363 /// let angle_120 = Radians(2.0 * core::f64::consts::FRAC_PI_3);
364 /// let angle_m120 = -angle_120;
365 /// let result = angle_m120 - angle_120;
366 /// assert!(is_within_tolerance(angle_120.0, result.0, 4.0 * f64::EPSILON));
367 /// ```
368 fn sub(self, other: Self) -> Self::Output {
369 self + -other
370 }
371}
372
373impl SubAssign for Radians {
374 fn sub_assign(&mut self, other: Self) {
375 *self = *self - other;
376 }
377}
378
379/// An angle represented by it's sine and cosine as `UnitNegRanges`.
380#[derive(Clone, Copy, Debug, PartialEq)]
381pub struct Angle {
382 /// The sine of the angle.
383 sin: trig::UnitNegRange,
384 /// The cosine of the angle.
385 cos: trig::UnitNegRange,
386}
387
388/// A default angle: zero degrees or radians.
389impl Default for Angle {
390 /// Implementation of Default for Angle returns Angle(0.0, 1.0),
391 /// i.e. the Angle corresponding to zero degrees or radians.
392 /// # Examples
393 /// ```
394 /// use angle_sc::Angle;
395 ///
396 /// let zero = Angle::default();
397 /// assert_eq!(0.0, zero.sin().0);
398 /// assert_eq!(1.0, zero.cos().0);
399 /// ```
400 fn default() -> Self {
401 Self {
402 sin: trig::UnitNegRange(0.0),
403 cos: trig::UnitNegRange(1.0),
404 }
405 }
406}
407
408impl Validate for Angle {
409 /// Test whether an `Angle` is valid, i.e. both sin and cos are valid
410 /// `UnitNegRange`s and the length of their hypotenuse is approximately 1.0.
411 fn is_valid(&self) -> bool {
412 self.sin.is_valid()
413 && self.cos.is_valid()
414 && is_within_tolerance(1.0, libm::hypot(self.sin.0, self.cos.0), f64::EPSILON)
415 }
416}
417
418impl Angle {
419 /// Construct an Angle from sin and cos values.
420 #[must_use]
421 pub const fn new(sin: trig::UnitNegRange, cos: trig::UnitNegRange) -> Self {
422 Self { sin, cos }
423 }
424
425 /// Construct an Angle from y and x values.
426 /// Normalizes the values.
427 #[must_use]
428 pub fn from_y_x(y: f64, x: f64) -> Self {
429 let length = libm::hypot(y, x);
430
431 if is_small(length, f64::EPSILON) {
432 Self::default()
433 } else {
434 Self::new(
435 trig::UnitNegRange::clamp(y / length),
436 trig::UnitNegRange::clamp(x / length),
437 )
438 }
439 }
440
441 /// The sine of the Angle.
442 #[must_use]
443 pub const fn sin(self) -> trig::UnitNegRange {
444 self.sin
445 }
446
447 /// The cosine of the Angle.
448 #[must_use]
449 pub const fn cos(self) -> trig::UnitNegRange {
450 self.cos
451 }
452
453 /// The tangent of the Angle.
454 ///
455 /// returns the tangent or `None` if `self.cos < SQ_EPSILON`
456 #[must_use]
457 pub fn tan(self) -> Option<f64> {
458 trig::tan(self.sin, self.cos)
459 }
460
461 /// The cosecant of the Angle.
462 ///
463 /// returns the cosecant or `None` if `self.sin < SQ_EPSILON`
464 #[must_use]
465 pub fn csc(self) -> Option<f64> {
466 trig::csc(self.sin)
467 }
468
469 /// The secant of the Angle.
470 ///
471 /// returns the secant or `None` if `self.cos < SQ_EPSILON`
472 #[must_use]
473 pub fn sec(self) -> Option<f64> {
474 trig::sec(self.cos)
475 }
476
477 /// The cotangent of the Angle.
478 ///
479 /// returns the cotangent or `None` if `self.sin < SQ_EPSILON`
480 #[must_use]
481 pub fn cot(self) -> Option<f64> {
482 trig::cot(self.sin, self.cos)
483 }
484
485 /// The absolute value of the angle, i.e. the angle with a positive sine.
486 /// # Examples
487 /// ```
488 /// use angle_sc::{Angle, Degrees};
489 ///
490 /// let angle_m45 = Angle::from(Degrees(-45.0));
491 /// let result_45 = angle_m45.abs();
492 /// assert_eq!(Degrees(45.0), Degrees::from(result_45));
493 /// ```
494 #[must_use]
495 pub const fn abs(self) -> Self {
496 Self {
497 sin: self.sin.abs(),
498 cos: self.cos,
499 }
500 }
501
502 /// The opposite angle on the circle, i.e. +/- 180 degrees.
503 /// # Examples
504 /// ```
505 /// use angle_sc::{Angle, Degrees};
506 ///
507 /// let angle_m30 = Angle::from(Degrees(-30.0));
508 /// let result = angle_m30.opposite();
509 /// assert_eq!(Degrees(150.0), Degrees::from(result));
510 /// ```
511 #[must_use]
512 pub fn opposite(self) -> Self {
513 Self {
514 sin: -self.sin,
515 cos: -self.cos,
516 }
517 }
518
519 /// A quarter turn clockwise around the circle, i.e. + 90°.
520 /// # Examples
521 /// ```
522 /// use angle_sc::{Angle, Degrees};
523 ///
524 /// let angle_m30 = Angle::from(Degrees(-30.0));
525 /// let result = angle_m30.quarter_turn_cw();
526 /// assert_eq!(Angle::from(Degrees(60.0)), result);
527 /// ```
528 #[must_use]
529 pub fn quarter_turn_cw(self) -> Self {
530 Self {
531 sin: self.cos,
532 cos: -self.sin,
533 }
534 }
535
536 /// A quarter turn counter-clockwise around the circle, i.e. - 90°.
537 /// # Examples
538 /// ```
539 /// use angle_sc::{Angle, Degrees};
540 ///
541 /// let angle_120 = Angle::from(Degrees(120.0));
542 /// let result = angle_120.quarter_turn_ccw();
543 /// assert_eq!(Angle::from(Degrees(30.0)), result);
544 /// ```
545 #[must_use]
546 pub fn quarter_turn_ccw(self) -> Self {
547 Self {
548 sin: -self.cos,
549 cos: self.sin,
550 }
551 }
552
553 /// Negate the cosine of the Angle.
554 /// I.e. `PI` - `angle.radians()` for positive angles,
555 /// `angle.radians()` + `PI` for negative angles
556 /// # Examples
557 /// ```
558 /// use angle_sc::{Angle, Degrees};
559 ///
560 /// let angle_45 = Angle::from(Degrees(45.0));
561 /// let result_45 = angle_45.negate_cos();
562 /// assert_eq!(Degrees(135.0), Degrees::from(result_45));
563 /// ```
564 #[must_use]
565 pub fn negate_cos(self) -> Self {
566 Self {
567 sin: self.sin,
568 cos: -self.cos,
569 }
570 }
571
572 /// Double the Angle.
573 /// See: [Double-angle formulae](https://en.wikipedia.org/wiki/List_of_trigonometric_identities#Double-angle_formulae)
574 /// # Examples
575 /// ```
576 /// use angle_sc::{Angle, Degrees};
577 ///
578 /// let angle_30 = Angle::from(Degrees(30.0));
579 /// let result_60 = angle_30.double();
580 ///
581 /// // Note: multiplication is not precise...
582 /// // assert_eq!(Degrees(60.0), Degrees::from(result_60));
583 /// let delta_angle = libm::fabs(60.0 - Degrees::from(result_60).0);
584 /// assert!(delta_angle <= 32.0 * f64::EPSILON);
585 /// ```
586 #[must_use]
587 pub fn double(self) -> Self {
588 Self {
589 sin: trig::UnitNegRange::clamp(2.0 * self.sin.0 * self.cos.0),
590 cos: trig::sq_a_minus_sq_b(self.cos, self.sin),
591 }
592 }
593
594 /// Half of the Angle.
595 /// See: [Half-angle formulae](https://en.wikipedia.org/wiki/List_of_trigonometric_identities#Half-angle_formulae)
596 /// # Examples
597 /// ```
598 /// use angle_sc::{Angle, Degrees};
599 ///
600 /// let angle_30 = Angle::from(Degrees(30.0));
601 /// let angle_60 = Angle::from(Degrees(60.0));
602 ///
603 /// assert_eq!(angle_30, angle_60.half());
604 /// ```
605 #[must_use]
606 pub fn half(self) -> Self {
607 Self {
608 sin: trig::UnitNegRange(libm::copysign(
609 libm::sqrt(trig::sq_sine_half(self.cos)),
610 self.sin.0,
611 )),
612 cos: trig::UnitNegRange(libm::sqrt(trig::sq_cosine_half(self.cos))),
613 }
614 }
615}
616
617impl Neg for Angle {
618 type Output = Self;
619
620 /// An implementation of Neg for Angle, i.e. -angle.
621 /// Negates the sine of the Angle, does not affect the cosine.
622 /// # Examples
623 /// ```
624 /// use angle_sc::{Angle, Degrees};
625 ///
626 /// let angle_45 = Angle::from(Degrees(45.0));
627 /// let result_m45 = -angle_45;
628 /// assert_eq!(Degrees(-45.0), Degrees::from(result_m45));
629 /// ```
630 fn neg(self) -> Self {
631 Self {
632 sin: -self.sin,
633 cos: self.cos,
634 }
635 }
636}
637
638impl Add for Angle {
639 type Output = Self;
640
641 /// Add two Angles, i.e. a + b
642 /// Uses trigonometric identity functions, see:
643 /// [angle sum and difference identities](https://en.wikipedia.org/wiki/List_of_trigonometric_identities#Angle_sum_and_difference_identities).
644 /// # Examples
645 /// ```
646 /// use angle_sc::{Angle, Degrees};
647 ///
648 /// let angle_30 = Angle::from(Degrees(30.0));
649 /// let angle_60 = Angle::from(Degrees(60.0));
650 /// let result_90 = angle_30 + angle_60;
651 /// assert_eq!(Degrees(90.0), Degrees::from(result_90));
652 /// ```
653 fn add(self, other: Self) -> Self::Output {
654 Self {
655 sin: trig::sine_sum(self.sin, self.cos, other.sin, other.cos),
656 cos: trig::cosine_sum(self.sin, self.cos, other.sin, other.cos),
657 }
658 }
659}
660
661impl AddAssign for Angle {
662 fn add_assign(&mut self, other: Self) {
663 *self = *self + other;
664 }
665}
666
667impl Sub for Angle {
668 type Output = Self;
669
670 /// Subtract two Angles, i.e. a - b
671 /// Uses trigonometric identity functions, see:
672 /// [angle sum and difference identities](https://en.wikipedia.org/wiki/List_of_trigonometric_identities#Angle_sum_and_difference_identities).
673 /// # Examples
674 /// ```
675 /// use angle_sc::{Angle, Degrees, is_within_tolerance};
676 ///
677 /// let angle_30 = Angle::from(Degrees(30.0));
678 /// let angle_60 = Angle::from(Degrees(60.0));
679 /// let result_30 = angle_60 - angle_30;
680 ///
681 /// assert!(is_within_tolerance(Degrees(30.0).0, Degrees::from(result_30).0, 32.0 * f64::EPSILON));
682 /// ```
683 fn sub(self, other: Self) -> Self::Output {
684 Self {
685 sin: trig::sine_diff(self.sin, self.cos, other.sin, other.cos),
686 cos: trig::cosine_diff(self.sin, self.cos, other.sin, other.cos),
687 }
688 }
689}
690
691impl SubAssign for Angle {
692 fn sub_assign(&mut self, other: Self) {
693 *self = *self - other;
694 }
695}
696
697impl PartialOrd for Angle {
698 /// Compare two Angles, i.e. a < b.
699 /// It compares whether an `Angle` is clockwise of the other `Angle` on the
700 /// unit circle.
701 ///
702 /// # Examples
703 /// ```
704 /// use angle_sc::{Angle, Degrees};
705 /// let degrees_120 = Angle::from(Degrees(120.0));
706 /// let degrees_m120 = -degrees_120;
707 /// assert!(degrees_120 < degrees_m120);
708 /// ```
709 fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
710 let delta = *other - *self;
711 trig::UnitNegRange(0.0).partial_cmp(&delta.sin)
712 }
713}
714
715impl From<Degrees> for Angle {
716 /// Construct an `Angle` from an angle in Degrees.
717 ///
718 /// Examples:
719 /// ```
720 /// use angle_sc::{Angle, Degrees, is_within_tolerance, trig};
721 ///
722 /// let angle = Angle::from(Degrees(60.0));
723 /// assert_eq!(trig::COS_30_DEGREES, angle.sin().0);
724 /// assert_eq!(0.5, angle.cos().0);
725 /// assert_eq!(60.0, Degrees::from(angle).0);
726 /// ```
727 fn from(a: Degrees) -> Self {
728 let (sin, cos) = trig::sincosd(a);
729 Self { sin, cos }
730 }
731}
732
733impl From<(Degrees, Degrees)> for Angle {
734 /// Construct an `Angle` from the difference of a pair angles in Degrees:
735 /// a - b
736 ///
737 /// Examples:
738 /// ```
739 /// use angle_sc::{Angle, Degrees, trig};
740 ///
741 /// // Difference of Degrees(-155.0) - Degrees(175.0)
742 /// let angle = Angle::from((Degrees(-155.0), Degrees(175.0)));
743 /// assert_eq!(0.5, angle.sin().0);
744 /// assert_eq!(trig::COS_30_DEGREES, angle.cos().0);
745 /// assert_eq!(30.0, Degrees::from(angle).0);
746 /// ```
747 fn from(params: (Degrees, Degrees)) -> Self {
748 let (sin, cos) = trig::sincosd_diff(params.0, params.1);
749 Self { sin, cos }
750 }
751}
752
753impl From<Radians> for Angle {
754 /// Construct an `Angle` from an angle in Radians.
755 ///
756 /// Examples:
757 /// ```
758 /// use angle_sc::{Angle, Radians, trig};
759 ///
760 /// let angle = Angle::from(Radians(-core::f64::consts::FRAC_PI_6));
761 /// assert_eq!(-0.5, angle.sin().0);
762 /// assert_eq!(trig::COS_30_DEGREES, angle.cos().0);
763 /// assert_eq!(-core::f64::consts::FRAC_PI_6, Radians::from(angle).0);
764 /// ```
765 fn from(a: Radians) -> Self {
766 let (sin, cos) = trig::sincos(a);
767 Self { sin, cos }
768 }
769}
770
771impl From<(Radians, Radians)> for Angle {
772 /// Construct an Angle from the difference of a pair angles in Radians:
773 /// a - b
774 ///
775 /// Examples:
776 /// ```
777 /// use angle_sc::{Angle, Radians, trig};
778 ///
779 /// // 6*π - π/3 radians round trip
780 /// let angle = Angle::from((
781 /// Radians(3.0 * core::f64::consts::TAU),
782 /// Radians(core::f64::consts::FRAC_PI_3),
783 /// ));
784 /// assert_eq!(-core::f64::consts::FRAC_PI_3, Radians::from(angle).0);
785 /// ```
786 fn from(params: (Radians, Radians)) -> Self {
787 let (sin, cos) = trig::sincos_diff(params.0, params.1);
788 Self { sin, cos }
789 }
790}
791
792impl From<Angle> for Radians {
793 /// Convert an Angle to Radians.
794 fn from(a: Angle) -> Self {
795 trig::arctan2(a.sin, a.cos)
796 }
797}
798
799impl From<Angle> for Degrees {
800 /// Convert an Angle to Degrees.
801 fn from(a: Angle) -> Self {
802 trig::arctan2d(a.sin, a.cos)
803 }
804}
805
806impl Serialize for Angle {
807 /// Serialize an Angle to an value in Degrees.
808 fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
809 where
810 S: Serializer,
811 {
812 serializer.serialize_newtype_struct("Degrees", &Degrees::from(*self))
813 }
814}
815
816impl<'de> Deserialize<'de> for Angle {
817 /// Deserialize an value in Degrees to an Angle.
818 fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
819 where
820 D: Deserializer<'de>,
821 {
822 Ok(Self::from(Degrees::deserialize(deserializer)?))
823 }
824}
825
826//////////////////////////////////////////////////////////////////////////////
827
828/// Calculates floating-point sum and error.
829/// The [2Sum](https://en.wikipedia.org/wiki/2Sum) algorithm.
830///
831/// * `a`, `b` the floating-point numbers to add.
832///
833/// returns (a + b) and the floating-point error: $t = a + b - (a \oplus b)$
834/// so: $a+b=s+t$.
835#[must_use]
836pub fn two_sum<T>(a: T, b: T) -> (T, T)
837where
838 T: Copy + Add<Output = T> + Sub<Output = T>,
839{
840 let s = a + b;
841 let a_prime = s - b;
842 let b_prime = s - a_prime;
843 let delta_a = a - a_prime;
844 let delta_b = b - b_prime;
845 let t = delta_a + delta_b;
846 (s, t)
847}
848
849/// Return the minimum of a or b.
850#[must_use]
851pub fn min<T>(a: T, b: T) -> T
852where
853 T: PartialOrd + Copy,
854{
855 if b < a { b } else { a }
856}
857
858/// Return the maximum of a or b.
859#[must_use]
860pub fn max<T>(a: T, b: T) -> T
861where
862 T: PartialOrd + Copy,
863{
864 if b < a { a } else { b }
865}
866
867/// The Validate trait.
868pub trait Validate {
869 /// return true if the type is valid, false otherwise.
870 fn is_valid(&self) -> bool;
871}
872
873/// Check whether value <= tolerance.
874#[must_use]
875pub fn is_small<T>(value: T, tolerance: T) -> bool
876where
877 T: PartialOrd + Copy,
878{
879 value <= tolerance
880}
881
882/// Check whether a value is within tolerance of a reference value.
883/// * `reference` the required value
884/// * `value` the value to test
885/// * `tolerance` the permitted tolerance
886///
887/// return true if abs(reference - value) is <= tolerance
888#[must_use]
889pub fn is_within_tolerance<T>(reference: T, value: T, tolerance: T) -> bool
890where
891 T: PartialOrd + Copy + Sub<Output = T>,
892{
893 let delta = max(reference, value) - min(reference, value);
894 is_small(delta, tolerance)
895}
896
897#[cfg(test)]
898mod tests {
899 use super::*;
900
901 #[test]
902 fn test_degrees_traits() {
903 let zero = Degrees::default();
904 assert_eq!(Degrees(0.0), zero);
905 let one = Degrees(1.0);
906 let mut one_clone = one.clone();
907 assert!(one_clone == one);
908 let two = Degrees(2.0);
909 let m_one = Degrees(-1.0);
910 assert_eq!(m_one, -one);
911
912 assert_eq!(one, m_one.abs());
913 assert_eq!(one, two.half());
914
915 assert_eq!(m_one, one - two);
916 one_clone -= two;
917 assert_eq!(m_one, one_clone);
918
919 assert_eq!(one, m_one + two);
920 one_clone += two;
921 assert_eq!(one, one_clone);
922
923 let d_120 = Degrees(120.0);
924 let d_m120 = Degrees(-120.0);
925 assert_eq!(d_120, d_m120.abs());
926
927 assert_eq!(Degrees(30.0), Degrees(-155.0) - Degrees(175.0));
928
929 assert_eq!(d_m120, d_120 + d_120);
930 assert_eq!(d_120, d_m120 + d_m120);
931 assert_eq!(d_120, d_m120 - d_120);
932
933 assert_eq!(Degrees(-60.0), d_120.opposite());
934 assert_eq!(Degrees(60.0), d_m120.opposite());
935
936 let serialized = serde_json::to_string(&one).unwrap();
937 let deserialized: Degrees = serde_json::from_str(&serialized).unwrap();
938 assert_eq!(one, deserialized);
939
940 let bad_text = "junk";
941 let _serde_error = serde_json::from_str::<Degrees>(&bad_text).unwrap_err();
942
943 print!("Degrees: {:?}", one);
944 }
945
946 #[test]
947 fn test_radians_traits() {
948 let zero = Radians::default();
949 assert_eq!(Radians(0.0), zero);
950 let one = Radians(1.0);
951 let mut one_clone = one.clone();
952 assert!(one_clone == one);
953 let two = Radians(2.0);
954 let m_two = -two;
955 assert!(one < two);
956 let m_one = Radians(-1.0);
957 assert_eq!(m_one, -one);
958
959 assert_eq!(one, m_one.abs());
960 assert_eq!(one, two.half());
961
962 assert_eq!(m_one, one - two);
963 one_clone -= two;
964 assert_eq!(m_one, one_clone);
965
966 assert_eq!(one, m_one + two);
967 one_clone += two;
968 assert_eq!(one, one_clone);
969
970 let result_1 = m_two - two;
971 assert_eq!(core::f64::consts::TAU - 4.0, result_1.0);
972 assert_eq!(core::f64::consts::PI - 4.0, result_1.opposite().0);
973
974 let result_2 = two - m_two;
975 assert_eq!(4.0 - core::f64::consts::TAU, result_2.0);
976 assert_eq!(4.0 - core::f64::consts::PI, result_2.opposite().0);
977
978 let value = Radians(-f64::EPSILON);
979 assert_eq!(Radians(0.0), value.clamp(Radians(1.0)));
980 let value = Radians(0.0);
981 assert_eq!(Radians(0.0), value.clamp(Radians(1.0)));
982 let value = Radians(1.0);
983 assert_eq!(Radians(1.0), value.clamp(Radians(1.0)));
984 let value = Radians(1.0 + f64::EPSILON);
985 assert_eq!(Radians(1.0), value.clamp(Radians(1.0)));
986
987 print!("Radians: {:?}", one);
988 }
989
990 #[test]
991 fn test_angle_traits() {
992 let zero = Angle::default();
993 assert_eq!(0.0, zero.sin().0);
994 assert_eq!(1.0, zero.cos().0);
995 assert_eq!(0.0, zero.tan().unwrap());
996 assert!(zero.csc().is_none());
997 assert_eq!(1.0, zero.sec().unwrap());
998 assert!(zero.cot().is_none());
999 assert!(zero.is_valid());
1000
1001 let zero_clone = zero.clone();
1002 assert_eq!(zero, zero_clone);
1003
1004 let one = Angle::from_y_x(1.0, 0.0);
1005 assert_eq!(1.0, one.sin().0);
1006 assert_eq!(0.0, one.cos().0);
1007 assert!(one.tan().is_none());
1008 assert_eq!(1.0, one.csc().unwrap());
1009 assert!(one.sec().is_none());
1010 assert_eq!(0.0, one.cot().unwrap());
1011 assert!(one.is_valid());
1012
1013 let angle_m45 = Angle::from_y_x(-f64::EPSILON, f64::EPSILON);
1014 assert!(is_within_tolerance(
1015 -core::f64::consts::FRAC_1_SQRT_2,
1016 angle_m45.sin().0,
1017 f64::EPSILON
1018 ));
1019 assert!(is_within_tolerance(
1020 core::f64::consts::FRAC_1_SQRT_2,
1021 angle_m45.cos().0,
1022 f64::EPSILON
1023 ));
1024
1025 assert!(angle_m45 < zero);
1026
1027 let serialized = serde_json::to_string(&zero).unwrap();
1028 let deserialized: Angle = serde_json::from_str(&serialized).unwrap();
1029 assert_eq!(zero, deserialized);
1030
1031 let bad_text = "junk";
1032 let _serde_error = serde_json::from_str::<Angle>(&bad_text).unwrap_err();
1033
1034 print!("Angle: {:?}", angle_m45);
1035 }
1036 #[test]
1037 fn test_angle_conversion() {
1038 let zero = Angle::default();
1039
1040 let too_small = Angle::from_y_x(-f64::EPSILON / 2.0, f64::EPSILON / 2.0);
1041 assert!(too_small.is_valid());
1042 assert_eq!(zero, too_small);
1043
1044 let small = Angle::from(-trig::MAX_COS_ANGLE_IS_ONE);
1045 assert!(small.is_valid());
1046 assert_eq!(-trig::MAX_COS_ANGLE_IS_ONE.0, small.sin().0);
1047 assert_eq!(1.0, small.cos().0);
1048 assert_eq!(-trig::MAX_COS_ANGLE_IS_ONE.0, Radians::from(small).0);
1049
1050 let angle_30 = Angle::from((
1051 Radians(core::f64::consts::FRAC_PI_3),
1052 Radians(core::f64::consts::FRAC_PI_6),
1053 ));
1054 assert!(angle_30.is_valid());
1055 assert_eq!(0.5, angle_30.sin().0);
1056 assert_eq!(libm::sqrt(3.0) / 2.0, angle_30.cos().0);
1057 assert_eq!(30.0, Degrees::from(angle_30).0);
1058 assert_eq!(core::f64::consts::FRAC_PI_6, Radians::from(angle_30).0);
1059
1060 let angle_45 = Angle::from(Radians(core::f64::consts::FRAC_PI_4));
1061 assert!(angle_45.is_valid());
1062 assert_eq!(core::f64::consts::FRAC_1_SQRT_2, angle_45.sin().0);
1063 assert_eq!(core::f64::consts::FRAC_1_SQRT_2, angle_45.cos().0);
1064 assert_eq!(45.0, Degrees::from(angle_45).0);
1065 assert_eq!(core::f64::consts::FRAC_PI_4, Radians::from(angle_45).0);
1066
1067 let angle_m45 = Angle::from(Degrees(-45.0));
1068 assert!(angle_m45.is_valid());
1069 assert_eq!(-core::f64::consts::FRAC_1_SQRT_2, angle_m45.sin().0);
1070 assert_eq!(core::f64::consts::FRAC_1_SQRT_2, angle_m45.cos().0);
1071 assert_eq!(-45.0, Degrees::from(angle_m45).0);
1072 assert_eq!(-core::f64::consts::FRAC_PI_4, Radians::from(angle_m45).0);
1073
1074 let angle_60 = Angle::from((Degrees(-140.0), Degrees(160.0)));
1075 assert!(angle_60.is_valid());
1076 assert_eq!(libm::sqrt(3.0) / 2.0, angle_60.sin().0);
1077 assert_eq!(0.5, angle_60.cos().0);
1078 assert_eq!(60.0, Degrees::from(angle_60).0);
1079 // Fails because PI is irrational
1080 // assert_eq!(core::f64::consts::FRAC_PI_3, Radians::from(angle_60).0);
1081 assert!(is_within_tolerance(
1082 core::f64::consts::FRAC_PI_3,
1083 Radians::from(angle_60).0,
1084 f64::EPSILON
1085 ));
1086
1087 let angle_30 = Angle::from((Degrees(-155.0), Degrees(175.0)));
1088 // assert!(angle_30.is_valid());
1089 assert_eq!(0.5, angle_30.sin().0);
1090 assert_eq!(libm::sqrt(3.0) / 2.0, angle_30.cos().0);
1091 assert_eq!(30.0, Degrees::from(angle_30).0);
1092 assert_eq!(core::f64::consts::FRAC_PI_6, Radians::from(angle_30).0);
1093
1094 let angle_120 = Angle::from(Degrees(120.0));
1095 assert!(angle_120.is_valid());
1096 assert_eq!(libm::sqrt(3.0) / 2.0, angle_120.sin().0);
1097 assert_eq!(-0.5, angle_120.cos().0);
1098 assert_eq!(120.0, Degrees::from(angle_120).0);
1099 assert_eq!(
1100 2.0 * core::f64::consts::FRAC_PI_3,
1101 Radians::from(angle_120).0
1102 );
1103
1104 let angle_m120 = Angle::from(Degrees(-120.0));
1105 assert!(angle_m120.is_valid());
1106 assert_eq!(-libm::sqrt(3.0) / 2.0, angle_m120.sin().0);
1107 assert_eq!(-0.5, angle_m120.cos().0);
1108 assert_eq!(-120.0, Degrees::from(angle_m120).0);
1109 assert_eq!(
1110 -2.0 * core::f64::consts::FRAC_PI_3,
1111 Radians::from(angle_m120).0
1112 );
1113
1114 let angle_m140 = Angle::from(Degrees(-140.0));
1115 assert!(angle_m140.is_valid());
1116 assert!(is_within_tolerance(
1117 -0.6427876096865393,
1118 angle_m140.sin().0,
1119 f64::EPSILON
1120 ));
1121 assert!(is_within_tolerance(
1122 -0.7660444431189781,
1123 angle_m140.cos().0,
1124 f64::EPSILON
1125 ));
1126 assert_eq!(-140.0, Degrees::from(angle_m140).0);
1127
1128 let angle_180 = Angle::from(Degrees(180.0));
1129 assert!(angle_180.is_valid());
1130 assert_eq!(0.0, angle_180.sin().0);
1131 assert_eq!(-1.0, angle_180.cos().0);
1132 assert_eq!(180.0, Degrees::from(angle_180).0);
1133 assert_eq!(core::f64::consts::PI, Radians::from(angle_180).0);
1134 }
1135
1136 #[test]
1137 fn test_angle_maths() {
1138 let degrees_30 = Angle::from(Degrees(30.0));
1139 let degrees_60 = Angle::from(Degrees(60.0));
1140 let degrees_120 = Angle::from(Degrees(120.0));
1141 let degrees_m120 = -degrees_120;
1142
1143 assert!(degrees_120 < degrees_m120);
1144 assert_eq!(degrees_120, degrees_m120.abs());
1145 assert_eq!(degrees_60, degrees_m120.opposite());
1146 assert_eq!(degrees_120, degrees_30.quarter_turn_cw());
1147 assert_eq!(degrees_30, degrees_120.quarter_turn_ccw());
1148 assert_eq!(degrees_60, degrees_120.negate_cos());
1149
1150 let result = degrees_m120 - degrees_120;
1151 assert_eq!(Degrees(120.0).0, Degrees::from(result).0);
1152
1153 let mut result = degrees_m120;
1154 result -= degrees_120;
1155 assert_eq!(Degrees(120.0).0, Degrees::from(result).0);
1156
1157 let result = degrees_120 + degrees_120;
1158 assert_eq!(Degrees(-120.0).0, Degrees::from(result).0);
1159
1160 let mut result = degrees_120;
1161 result += degrees_120;
1162 assert_eq!(Degrees(-120.0).0, Degrees::from(result).0);
1163
1164 let result = degrees_60.double();
1165 assert_eq!(Degrees(120.0).0, Degrees::from(result).0);
1166
1167 let result = degrees_120.double();
1168 assert_eq!(Degrees(-120.0).0, Degrees::from(result).0);
1169
1170 assert_eq!(-degrees_60, degrees_m120.half());
1171 }
1172
1173 #[test]
1174 fn test_two_sum() {
1175 let result = two_sum(1.0, 1.0);
1176 assert_eq!(2.0, result.0);
1177 assert_eq!(0.0, result.1);
1178
1179 let result = two_sum(1.0, 1e-53);
1180 assert_eq!(1.0, result.0);
1181 assert_eq!(1e-53, result.1);
1182
1183 let result = two_sum(1.0, -1e-53);
1184 assert_eq!(1.0, result.0);
1185 assert_eq!(-1e-53, result.1);
1186 }
1187
1188 #[test]
1189 fn test_min_and_max() {
1190 // min -ve and +ve
1191 assert_eq!(min(-1.0 + f64::EPSILON, -1.0), -1.0);
1192 assert_eq!(min(1.0, 1.0 + f64::EPSILON), 1.0);
1193 // max -ve and +ve
1194 assert_eq!(max(-1.0, -1.0 - f64::EPSILON), -1.0);
1195 assert_eq!(max(1.0 - f64::EPSILON, 1.0), 1.0);
1196 }
1197
1198 #[test]
1199 fn test_is_within_tolerance() {
1200 // below minimum tolerance
1201 assert_eq!(
1202 false,
1203 is_within_tolerance(1.0 - 2.0 * f64::EPSILON, 1.0, f64::EPSILON)
1204 );
1205
1206 // within minimum tolerance
1207 assert!(is_within_tolerance(1.0 - f64::EPSILON, 1.0, f64::EPSILON));
1208
1209 // within maximum tolerance
1210 assert!(is_within_tolerance(1.0 + f64::EPSILON, 1.0, f64::EPSILON));
1211
1212 // above maximum tolerance
1213 assert_eq!(
1214 false,
1215 is_within_tolerance(1.0 + 2.0 * f64::EPSILON, 1.0, f64::EPSILON)
1216 );
1217 }
1218}