1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
use std::fs::File;
use std::io::{prelude::*, BufReader, ErrorKind};
use std::{mem, slice};
use byteorder::{LittleEndian, ReadBytesExt};
use crc::crc32::{self, Hasher32};
use block::Block;
use ext::WriteBlock;
use headers::{ChunkHeader, ChunkType, FileHeader};
use result::{Error, Result};
const BLOCK_SIZE: usize = Block::SIZE as usize;
const U32_BLOCK_SIZE: usize = BLOCK_SIZE / mem::size_of::<u32>();
pub struct Reader {
src: BufReader<File>,
current_chunk: Option<ChunkHeader>,
current_fill: Option<[u8; 4]>,
remaining_chunks: u32,
crc: Option<crc32::Digest>,
finished: bool,
}
impl Reader {
pub fn new(file: File) -> Result<Self> {
let mut src = BufReader::new(file);
let header = FileHeader::read_from(&mut src)?;
Ok(Self {
src,
current_chunk: None,
current_fill: None,
remaining_chunks: header.total_chunks,
crc: None,
finished: false,
})
}
pub fn with_crc(file: File) -> Result<Self> {
let mut reader = Self::new(file)?;
reader.crc = Some(crc32::Digest::new(crc32::IEEE));
Ok(reader)
}
fn next_block(&mut self) -> Result<Block> {
let mut chunk = match self.current_chunk.take() {
Some(c) => c,
None => ChunkHeader::read_from(&mut self.src)?,
};
let block = self.read_block(&mut chunk)?;
if let Some(digest) = self.crc.as_mut() {
digest.write_block(&block);
}
if chunk.chunk_size <= 1 {
self.remaining_chunks -= 1;
self.current_chunk = None;
self.current_fill = None;
} else {
chunk.chunk_size -= 1;
self.current_chunk = Some(chunk);
}
Ok(block)
}
fn read_block(&mut self, chunk: &mut ChunkHeader) -> Result<Block> {
match chunk.chunk_type {
ChunkType::Raw => {
let mut buf = [0; BLOCK_SIZE];
self.src.read_exact(&mut buf)?;
Ok(Block::Raw(Box::new(buf)))
}
ChunkType::Fill => {
let value = match self.current_fill {
Some(v) => v,
None => {
self.current_fill = Some(read4(&mut self.src)?);
self.current_fill.unwrap()
}
};
Ok(Block::Fill(value))
}
ChunkType::DontCare => Ok(Block::Skip),
ChunkType::Crc32 => {
let checksum = self.src.read_u32::<LittleEndian>()?;
self.verify_checksum(checksum)?;
Ok(Block::Crc32(checksum))
}
}
}
fn verify_checksum(&self, checksum: u32) -> Result<()> {
if let Some(digest) = self.crc.as_ref() {
if digest.sum32() != checksum {
return Err(Error::Parse("Checksum does not match".into()));
}
}
Ok(())
}
}
impl Iterator for Reader {
type Item = Result<Block>;
fn next(&mut self) -> Option<Self::Item> {
if self.finished {
return None;
}
let result = self.next_block();
self.finished = result.is_err() || self.remaining_chunks == 0;
Some(result)
}
}
fn read4<R: Read>(mut r: R) -> Result<[u8; 4]> {
let mut buf = [0; 4];
r.read_exact(&mut buf)?;
Ok(buf)
}
struct AlignedBuf([u32; U32_BLOCK_SIZE]);
impl AlignedBuf {
fn new() -> Self {
AlignedBuf([0; U32_BLOCK_SIZE])
}
fn as_ref(&self) -> &[u8] {
let ptr = self.0.as_ptr() as *const u8;
let len = self.0.len() * mem::size_of::<u32>();
unsafe { slice::from_raw_parts(ptr, len) }
}
fn as_mut(&mut self) -> &mut [u8] {
let ptr = self.0.as_mut_ptr() as *mut u8;
let len = self.0.len() * mem::size_of::<u32>();
unsafe { slice::from_raw_parts_mut(ptr, len) }
}
fn as_u32(&self) -> &[u32] {
&self.0
}
fn into_inner(self) -> [u8; BLOCK_SIZE] {
unsafe { mem::transmute::<[u32; U32_BLOCK_SIZE], [u8; BLOCK_SIZE]>(self.0) }
}
}
pub struct Encoder {
src: File,
finished: bool,
}
impl Encoder {
pub fn new(file: File) -> Result<Self> {
Ok(Self {
src: file,
finished: false,
})
}
fn read_block(&self) -> Result<Option<Block>> {
let mut buf = AlignedBuf::new();
let bytes_read = read_all(&self.src, buf.as_mut())?;
let block = match bytes_read {
0 => None,
_ => Some(self.encode_block(buf)),
};
Ok(block)
}
fn encode_block(&self, buf: AlignedBuf) -> Block {
if is_sparse(buf.as_u32()) {
let value = read4(buf.as_ref()).unwrap();
if value == [0; 4] {
Block::Skip
} else {
Block::Fill(value)
}
} else {
Block::Raw(Box::new(buf.into_inner()))
}
}
}
impl Iterator for Encoder {
type Item = Result<Block>;
fn next(&mut self) -> Option<Self::Item> {
if self.finished {
return None;
}
match self.read_block() {
Ok(Some(c)) => Some(Ok(c)),
Ok(None) => {
self.finished = true;
None
}
Err(e) => {
self.finished = true;
Some(Err(e))
}
}
}
}
fn read_all<R: Read>(mut r: R, mut buf: &mut [u8]) -> Result<usize> {
let buf_size = buf.len();
while !buf.is_empty() {
match r.read(buf) {
Ok(0) => break,
Ok(n) => {
let tmp = buf;
buf = &mut tmp[n..]
}
Err(ref e) if e.kind() == ErrorKind::Interrupted => (),
Err(e) => return Err(e.into()),
};
}
Ok(buf_size - buf.len())
}
fn is_sparse(buf: &[u32]) -> bool {
let mut parts = buf.iter();
let first = parts.next().unwrap();
parts.all(|p| p == first)
}
#[cfg(test)]
mod test {
use super::*;
const U8_BUF: &[u8] = &[0xaa; BLOCK_SIZE];
const U32_BUF: &[u32] = &[0xaaaaaaaa; U32_BLOCK_SIZE];
const HALF_BLOCK_SIZE: usize = BLOCK_SIZE / 2;
#[test]
fn aligned_buf() {
let mut buf = AlignedBuf::new();
buf.as_mut().write_all(U8_BUF).unwrap();
assert_eq!(buf.as_ref(), U8_BUF);
assert_eq!(buf.as_u32(), U32_BUF);
let content = buf.into_inner();
assert_eq!(&content[..], U8_BUF);
}
#[test]
fn read4() {
assert_eq!(super::read4(U8_BUF).unwrap(), [0xaa; 4]);
}
#[test]
fn read_all() {
let mut buf = [0; BLOCK_SIZE];
assert_eq!(
super::read_all(&U8_BUF[..HALF_BLOCK_SIZE], &mut buf).unwrap(),
HALF_BLOCK_SIZE
);
assert_eq!(&buf[..HALF_BLOCK_SIZE], &U8_BUF[..HALF_BLOCK_SIZE]);
assert_eq!(&buf[HALF_BLOCK_SIZE..], &[0; HALF_BLOCK_SIZE][..]);
assert_eq!(super::read_all(U8_BUF, &mut buf).unwrap(), BLOCK_SIZE);
assert_eq!(&buf[..], U8_BUF);
}
#[test]
fn is_sparse() {
assert!(super::is_sparse(U32_BUF));
let buf: Vec<_> = (0..U32_BLOCK_SIZE as u32).collect();
assert!(!super::is_sparse(&buf));
}
}