1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
//! Binning the iterator output into fixed size intervals if the output
//! is of the form `(I64Interval, T)`. Only bins with non-empty intersections
//! with those intervals will be returned.

use crate::{
    interval::{traits::Interval, I64Interval},
    set::traits::{Finite, Intersect},
};
use num::{FromPrimitive, Num};
use std::cmp::Ordering;

pub trait IntoBinnedIntervalIter<T, F>: Iterator + Sized {
    fn into_binned_interval_iter(
        self,
        bin_size: i64,
        aggregate_op: AggregateOp,
        interval_value_extractor: F,
    ) -> BinnedIntervalIter<Self, T, F>
    where
        F: Fn(<Self as Iterator>::Item) -> (I64Interval, T);
}

impl<I, T, F> IntoBinnedIntervalIter<T, F> for I
where
    I: Iterator,
    F: Fn(<I as Iterator>::Item) -> (I64Interval, T),
{
    fn into_binned_interval_iter(
        self,
        bin_size: i64,
        aggregate_op: AggregateOp,
        interval_value_extractor: F,
    ) -> BinnedIntervalIter<Self, T, F> {
        BinnedIntervalIter::new(self, bin_size, aggregate_op, interval_value_extractor)
    }
}

/// With imaginary bins of size `bin_size` and aligned at `0`,
/// returns a value for each bin that intersects one or more intervals from
/// the original iterator `iter`, where the value at each intersection is
/// obtained by applying the operation specified by the `aggregate_op` for
/// all the overlapping intervals and their associated values, where the value of each
/// overlapping interval is multiplied by the length of the interval if the `aggregate_op`
/// is `Sum`.
///
/// # Panics
/// The iterator will panic if the intervals returned by the original `iter` are not
/// disjoint or increasing.
///
/// # Example
/// ```
/// use analytic::{
///     interval::I64Interval,
///     iter::binned_interval_iter::{AggregateOp, IntoBinnedIntervalIter},
///     partition::integer_interval_map::IntegerIntervalMap,
/// };
///
/// let bin_size = 5;
/// let mut interval_map = IntegerIntervalMap::new();
/// interval_map.aggregate(I64Interval::new(-1, 1), 2);
/// interval_map.aggregate(I64Interval::new(14, 17), -1);
///
/// // interval coordinates                       | value
/// // -1 | 0 1  |   ...   |        |              | +2
/// //    |      |   ...   |     14 | 15 16 17     | -1
/// //---------------------------------------------
/// //  2 || 4   ||  ...   || -1   || -3          | bin sum
/// //  2 || 2   ||  ...   || -1   || -1          | bin max
/// //  2 || 2   ||  ...   || -1   || -1          | bin min
/// assert_eq!(
///     interval_map
///         .iter()
///         .into_binned_interval_iter(bin_size, AggregateOp::Sum, |(&interval, &val)| (
///             interval, val
///         ))
///         .collect::<Vec<(I64Interval, i32)>>(),
///     vec![
///         (I64Interval::new(-5, -1), 2),
///         (I64Interval::new(0, 4), 4),
///         (I64Interval::new(10, 14), -1),
///         (I64Interval::new(15, 19), -3),
///     ]
/// );
/// assert_eq!(
///     interval_map
///         .iter()
///         .into_binned_interval_iter(bin_size, AggregateOp::Max, |(&interval, &val)| (
///             interval, val
///         ))
///         .collect::<Vec<(I64Interval, i32)>>(),
///     vec![
///         (I64Interval::new(-5, -1), 2),
///         (I64Interval::new(0, 4), 2),
///         (I64Interval::new(10, 14), -1),
///         (I64Interval::new(15, 19), -1),
///     ]
/// );
/// assert_eq!(
///     interval_map
///         .iter()
///         .into_binned_interval_iter(bin_size, AggregateOp::Min, |(&interval, &val)| (
///             interval, val
///         ))
///         .collect::<Vec<(I64Interval, i32)>>(),
///     vec![
///         (I64Interval::new(-5, -1), 2),
///         (I64Interval::new(0, 4), 2),
///         (I64Interval::new(10, 14), -1),
///         (I64Interval::new(15, 19), -1),
///     ]
/// );
/// ```
#[derive(Clone, Debug)]
pub struct BinnedIntervalIter<I, T, F> {
    iter: I,
    bin_size: i64,
    aggregate_op: AggregateOp,
    interval_value_extractor: F,
    current_interval_val: Option<(I64Interval, T)>,
    current_bin: Option<I64Interval>,
}

/// The value of the associated with `Min` and `Max` are the initial min and max values.
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
pub enum AggregateOp {
    Max,
    Min,
    Sum,
}

impl<I, T, F> BinnedIntervalIter<I, T, F> {
    pub fn new(
        mut iter: I,
        bin_size: i64,
        aggregate_op: AggregateOp,
        interval_value_extractor: F,
    ) -> Self
    where
        I: Iterator,
        F: Fn(<I as Iterator>::Item) -> (I64Interval, T), {
        assert!(bin_size >= 1, "bin_size must be at least 1");
        let current_interval_val = iter.next().map(|item| interval_value_extractor(item));
        BinnedIntervalIter {
            iter,
            bin_size,
            aggregate_op,
            interval_value_extractor,
            current_interval_val,
            current_bin: None,
        }
    }
}

impl<I, T, F> Iterator for BinnedIntervalIter<I, T, F>
where
    I: Iterator,
    T: Copy + Num + FromPrimitive + PartialOrd,
    F: Fn(<I as Iterator>::Item) -> (I64Interval, T),
{
    type Item = (I64Interval, T);

    /// After every iteration, `self.current_bin` can be
    /// * `None`: indicating that the current interval has not been processed at all
    /// * `Some`: indicating the last used bin
    ///
    /// and `self.current_interval_val` can be
    /// * `None`: indicating that all the intervals have been processed
    /// * `Some`: indicating that the current interval still has unprocessed elements
    ///
    /// # panics: if the intervals returned by the original `iter` are not disjoint or increasing.
    fn next(&mut self) -> Option<Self::Item> {
        let current_interval = &self.current_interval_val;
        match current_interval {
            None => None,
            Some((mut interval, mut val)) => {
                let mut aggregate: Option<T> = None;

                let interval_start = interval.get_start();

                // the start of the first bin that overlaps the interval
                let first_overlap_bin_start = if interval_start >= 0 {
                    (interval_start / self.bin_size) * self.bin_size
                } else {
                    // take the ceiling towards the negative direction
                    ((interval_start - (self.bin_size - 1)) / self.bin_size) * self.bin_size
                };

                let bin_start = match self.current_bin {
                    None => {
                        // have not processed the current interval at all yet
                        first_overlap_bin_start
                    }
                    Some(old_bin) => {
                        if old_bin.get_end() < interval_start {
                            first_overlap_bin_start
                        } else {
                            old_bin.get_end() + 1
                        }
                    }
                };
                let bin_end_inclusive = bin_start + self.bin_size - 1;
                self.current_bin = Some(I64Interval::new(bin_start, bin_end_inclusive));

                loop {
                    aggregate = match self.aggregate_op {
                        AggregateOp::Max => Some(aggregate.map_or_else(
                            || val,
                            |agg| match agg.partial_cmp(&val).unwrap() {
                                Ordering::Less => val,
                                _ => agg,
                            },
                        )),
                        AggregateOp::Min => Some(aggregate.map_or_else(
                            || val,
                            |agg| match agg.partial_cmp(&val).unwrap() {
                                Ordering::Greater => val,
                                _ => agg,
                            },
                        )),
                        AggregateOp::Sum => Some(
                            aggregate.unwrap_or(T::zero())
                                + val
                                    * T::from_usize(
                                        self.current_bin
                                            .unwrap()
                                            .intersect(&interval)
                                            .map_or_else(|| 0, |i| i.size()),
                                    )
                                    .unwrap(),
                        ),
                    };

                    let interval_end_inclusive = interval.get_end();

                    // Either the interval is contained in the bin
                    // or it extends rightwards beyond the bin.
                    if interval_end_inclusive <= bin_end_inclusive {
                        // If it is contained in the bin, we will get the next interval.
                        self.current_interval_val = self
                            .iter
                            .next()
                            .map(|item| (self.interval_value_extractor)(item));
                        match self.current_interval_val {
                            None => {
                                break;
                            }
                            Some((i, v)) => {
                                assert!(
                                    interval_end_inclusive < i.get_start(),
                                    "previous interval end ({}) >= next interval start ({})",
                                    interval_end_inclusive,
                                    i.get_start()
                                );
                                interval = i;
                                val = v;
                                if interval.get_start() > bin_end_inclusive {
                                    break;
                                }
                            }
                        };
                    } else {
                        // Otherwise, the current bin has received all the information
                        // from the intersecting intervals and is ready to be returned.
                        break;
                    }
                }
                Some((self.current_bin.unwrap(), aggregate.unwrap()))
            }
        }
    }
}

#[cfg(test)]
mod tests {
    use crate::{
        interval::I64Interval,
        iter::binned_interval_iter::{AggregateOp, IntoBinnedIntervalIter},
        partition::integer_interval_map::IntegerIntervalMap,
    };

    #[test]
    fn test_binned_interval_iter() {
        let bin_size = 3;
        let mut interval_map = IntegerIntervalMap::new();
        interval_map.aggregate(I64Interval::new(-1, 4), 2);
        interval_map.aggregate(I64Interval::new(6, 8), 4);
        interval_map.aggregate(I64Interval::new(4, 7), 1);

        // interval coordinates           | value
        // -1 | 0 1 2 | 3 4   |           | +2
        //    |       |       | 6 7 8     | +4
        //    |       |   4 5 | 6 7       | +1
        //---------------------------------
        //  2 | 2 2 2 | 2 3 1 | 5 5 4 |   | superposed values
        //  2 || 6    || 6    || 14   ||  | bin sum
        //  2 || 2    || 3    || 5    ||  | bin max
        //  2 || 2    || 1    || 4    ||  | bin min

        macro_rules! get_actual {
            ($op:expr) => {
                interval_map
                    .iter()
                    .into_binned_interval_iter(bin_size, $op, |(&interval, &val)| (interval, val))
                    .collect::<Vec<(I64Interval, i32)>>()
            };
        }

        assert_eq!(get_actual!(AggregateOp::Sum), vec![
            (I64Interval::new(-3, -1), 2),
            (I64Interval::new(0, 2), 6),
            (I64Interval::new(3, 5), 6),
            (I64Interval::new(6, 8), 14),
        ]);
        assert_eq!(get_actual!(AggregateOp::Max), vec![
            (I64Interval::new(-3, -1), 2),
            (I64Interval::new(0, 2), 2),
            (I64Interval::new(3, 5), 3),
            (I64Interval::new(6, 8), 5),
        ]);
        assert_eq!(get_actual!(AggregateOp::Min), vec![
            (I64Interval::new(-3, -1), 2),
            (I64Interval::new(0, 2), 2),
            (I64Interval::new(3, 5), 1),
            (I64Interval::new(6, 8), 4),
        ]);

        interval_map.aggregate(I64Interval::new(2, 4), -3);
        interval_map.aggregate(I64Interval::new(14, 16), -2);

        // interval coordinates           | value
        // -1 | 0 1 2 | 3 4   |           | +2
        //    |       |       | 6 7 8     | +4
        //    |       |   4 5 | 6 7       | +1
        //    |     2 | 3 4   |           | -3
        //---------------------------------
        //  2 | 2 2 -1|-1 0 1 | 5 5 4 |   | superposed values
        //  2 || 3    || 0    || 14   ||  | bin sum
        //  2 || 2    || 1    || 5    ||  | bin max
        //  2 || -1   || -1   || 4    ||  | bin min
        assert_eq!(get_actual!(AggregateOp::Sum), vec![
            (I64Interval::new(-3, -1), 2),
            (I64Interval::new(0, 2), 3),
            (I64Interval::new(3, 5), 0),
            (I64Interval::new(6, 8), 14),
            (I64Interval::new(12, 14), -2),
            (I64Interval::new(15, 17), -4),
        ]);
        assert_eq!(get_actual!(AggregateOp::Max), vec![
            (I64Interval::new(-3, -1), 2),
            (I64Interval::new(0, 2), 2),
            (I64Interval::new(3, 5), 1),
            (I64Interval::new(6, 8), 5),
            (I64Interval::new(12, 14), -2),
            (I64Interval::new(15, 17), -2),
        ]);
        assert_eq!(get_actual!(AggregateOp::Min), vec![
            (I64Interval::new(-3, -1), 2),
            (I64Interval::new(0, 2), -1),
            (I64Interval::new(3, 5), -1),
            (I64Interval::new(6, 8), 4),
            (I64Interval::new(12, 14), -2),
            (I64Interval::new(15, 17), -2),
        ]);
    }
}