1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
// "ami" crate - Licensed under the MIT LICENSE // * Copyright (c) 2017-2018 Jeron A. Lau <jeron.lau@plopgrizzly.com> use std::fmt; use Vec3; use BCube; use BBox; // use math::Plane; #[derive(Clone, Copy, PartialEq)] /// A Frustum pub struct Frustum { /// The center of the frustum pub center: Vec3, /// The radius of the frustum pub radius: f32, /// The fov in x pub wfov: f32, /// the fov in y pub hfov: f32, /// how much rotated from facing "straight forward" in x pub xrot: f32, /// how much rotated from facing "straight forward" in y pub yrot: f32, } impl fmt::Debug for Frustum { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "(radius: {:?})", self.radius) } } impl Frustum { /// Create a new viewing frustum. /// /// * `center` - The center of the frustum cone. /// * `radius` - How far can you see? /// * `xrot` - Direction facing on x axis (radians). /// * `yrot` - Direction facing on y axis (radians). /// * `wfov` - The fov on the X axis (radians). /// * `hfov` - The fov on the Y axis (radians). pub fn new(center: Vec3, radius: f32, xrot: f32, yrot: f32, wfov: f32, hfov: f32) -> Frustum { /* let xmax = far / (wfov / 2.0).tan(); let ymax = far / (hfov / 2.0).tan(); let rightfar = Vec3::new(xmax, 0.0, far); let leftfar = Vec3::new(-xmax, 0.0, far); let topfar = Vec3::new(0.0, -ymax, far); let bottomfar = Vec3::new(0.0, ymax, far); // let camera = Vec3::new(0.0, 0.0, -ar); let wdist = ((::std::f32::consts::PI - wfov) / 2.0).sin() * -xmax; let hdist = ((::std::f32::consts::PI - hfov) / 2.0).sin() * -ymax; let top = Plane::new(bottomfar, hdist); let bottom = Plane::new(topfar, hdist); let right = Plane::new(leftfar, wdist); let left = Plane::new(rightfar, wdist); let near = Plane::new(Vec3::new(0.0, 0.0, 1.0), 0.0); let far = Plane::new(Vec3::new(0.0, 0.0, -1.0), -far); Frustum { near, far, top, bottom, right, left }*/ Frustum { center, radius, xrot, yrot, wfov, hfov } } /// pub fn collide_bbox(&self, bbox: BBox) -> bool { for i in bbox.all_points().iter() { if (*i - self.center).mag() <= self.radius { return true; } } false } /// If viewing frustum collides with the bounding box. pub fn collide_bcube(&self, bcube: BCube) -> bool { for i in bcube.all_points().iter() { if (*i - self.center).mag() <= self.radius { return true; } } false /* let top = self.top; let bottom = self.bottom; let right = self.right; let left = self.left; let near = self.near; let far = self.far;*/ /* let planes = [self.top, self.bottom, self.right, self.left, self.near, self.far]; for plane in planes.iter() { let (a, b) = bcube.pn_pair_from_normal(plane.facing); if !plane.isdistpos_point(a) && !plane.isdistpos_point(b) { return false; } }*/ /* // All 6 planes must have a point within their area. top.isdistpos_bcube(bcube) && bottom.isdistpos_bcube(bcube) && right.isdistpos_bcube(bcube) && left.isdistpos_bcube(bcube) && near.isdistpos_bcube(bcube) && far.isdistpos_bcube(bcube)*/ } /// If viewing frustum collides with a point. pub fn collide_point(&self, point: Vec3) -> bool { (point - self.center).mag() <= self.radius /* self.near.isdistpos_point(point) && self.far.isdistpos_point(point) && self.left.isdistpos_point(point) && self.right.isdistpos_point(point) && self.top.isdistpos_point(point) && self.bottom.isdistpos_point(point)*/ } }