Expand description
Natural gradient optimization on statistical manifolds
§Natural Gradient Optimization
This module implements natural gradient descent algorithms for optimization on statistical manifolds and Riemannian manifolds, leveraging information geometry principles for enhanced convergence properties.
§Mathematical Background
Natural gradient descent modifies standard gradient descent by using the Fisher information matrix (or more generally, a Riemannian metric) to precondition the gradient updates:
θ_{t+1} = θ_t - α G^{-1}(θ_t) ∇f(θ_t)where G(θ) is the Fisher information matrix or Riemannian metric tensor.
For statistical manifolds, the Fisher information matrix is:
G_{ij}(θ) = E[∂_i log p(x|θ) ∂_j log p(x|θ)]This approach provides invariance under reparameterization and often exhibits superior convergence properties compared to standard gradient descent.
Modules§
- info_
geom - Information geometry utilities for statistical manifolds
Structs§
- Natural
Gradient Config - Configuration for natural gradient optimization
- Natural
Gradient Optimizer - Natural gradient optimizer for statistical manifolds
- Natural
Gradient Result - Results from natural gradient optimization
Traits§
- Objective
With Fisher - Trait for defining objective functions with Fisher information