amari_gpu/
shaders.rs

1//! WebGPU compute shader library for mathematical operations
2//!
3//! This module contains optimized WGSL compute shaders for various mathematical
4//! domains including tropical algebra, automatic differentiation, and fusion systems.
5
6use std::collections::HashMap;
7
8/// Shader library managing all mathematical compute shaders
9pub struct ShaderLibrary {
10    shaders: HashMap<String, &'static str>,
11}
12
13impl ShaderLibrary {
14    /// Create new shader library with all mathematical shaders
15    pub fn new() -> Self {
16        let mut shaders = HashMap::new();
17
18        // Tropical algebra shaders
19        shaders.insert(
20            "tropical_matrix_multiply".to_string(),
21            TROPICAL_MATRIX_MULTIPLY,
22        );
23        shaders.insert("tropical_vector_add".to_string(), TROPICAL_VECTOR_ADD);
24        shaders.insert(
25            "tropical_neural_network".to_string(),
26            TROPICAL_NEURAL_NETWORK,
27        );
28
29        // Dual number shaders
30        shaders.insert("dual_forward_ad".to_string(), DUAL_FORWARD_AD);
31        shaders.insert("dual_batch_gradient".to_string(), DUAL_BATCH_GRADIENT);
32        shaders.insert("dual_chain_rule".to_string(), DUAL_CHAIN_RULE);
33
34        // Fusion system shaders
35        shaders.insert("tropical_dual_clifford".to_string(), TROPICAL_DUAL_CLIFFORD);
36        shaders.insert("fusion_attention".to_string(), FUSION_ATTENTION);
37
38        // Information geometry shaders
39        shaders.insert("fisher_information".to_string(), FISHER_INFORMATION);
40        shaders.insert("kl_divergence_batch".to_string(), KL_DIVERGENCE_BATCH);
41
42        // Cellular automata shaders
43        shaders.insert("ca_evolution".to_string(), CA_EVOLUTION);
44        shaders.insert("ca_self_assembly".to_string(), CA_SELF_ASSEMBLY);
45
46        // Enumerative geometry shaders
47        shaders.insert("intersection_theory".to_string(), INTERSECTION_THEORY);
48        shaders.insert("schubert_calculus".to_string(), SCHUBERT_CALCULUS);
49
50        Self { shaders }
51    }
52
53    /// Get shader source by name
54    pub fn get_shader(&self, name: &str) -> Option<&'static str> {
55        self.shaders.get(name).copied()
56    }
57
58    /// List all available shaders
59    pub fn list_shaders(&self) -> Vec<String> {
60        self.shaders.keys().cloned().collect()
61    }
62}
63
64impl Default for ShaderLibrary {
65    fn default() -> Self {
66        Self::new()
67    }
68}
69
70/// Tropical algebra shader collection
71pub const TROPICAL_SHADERS: &[(&str, &str)] = &[
72    ("tropical_matrix_multiply", TROPICAL_MATRIX_MULTIPLY),
73    ("tropical_vector_add", TROPICAL_VECTOR_ADD),
74    ("tropical_neural_network", TROPICAL_NEURAL_NETWORK),
75];
76
77/// Dual number shader collection
78pub const DUAL_SHADERS: &[(&str, &str)] = &[
79    ("dual_forward_ad", DUAL_FORWARD_AD),
80    ("dual_batch_gradient", DUAL_BATCH_GRADIENT),
81    ("dual_chain_rule", DUAL_CHAIN_RULE),
82];
83
84/// Fusion system shader collection
85pub const FUSION_SHADERS: &[(&str, &str)] = &[
86    ("tropical_dual_clifford", TROPICAL_DUAL_CLIFFORD),
87    ("fusion_attention", FUSION_ATTENTION),
88];
89
90// =====================================================================
91// TROPICAL ALGEBRA SHADERS
92// =====================================================================
93
94/// Tropical (max-plus) matrix multiplication: C = A ⊗ B where ⊗ is tropical product
95const TROPICAL_MATRIX_MULTIPLY: &str = r#"
96@group(0) @binding(0) var<storage, read> matrix_a: array<f32>;
97@group(0) @binding(1) var<storage, read> matrix_b: array<f32>;
98@group(0) @binding(2) var<storage, read_write> result: array<f32>;
99@group(0) @binding(3) var<storage, read> dimensions: array<u32>; // [M, N, K]
100
101@compute @workgroup_size(16, 16)
102fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
103    let M = dimensions[0];
104    let N = dimensions[1];
105    let K = dimensions[2];
106
107    let row = global_id.x;
108    let col = global_id.y;
109
110    if (row >= M || col >= N) {
111        return;
112    }
113
114    // Tropical matrix multiplication: (A ⊗ B)[i,j] = max_k(A[i,k] + B[k,j])
115    var max_val = -3.4028235e+38; // -infinity in tropical algebra
116
117    for (var k = 0u; k < K; k = k + 1u) {
118        let a_val = matrix_a[row * K + k];
119        let b_val = matrix_b[k * N + col];
120
121        // Tropical multiplication: a ⊗ b = a + b
122        let tropical_product = a_val + b_val;
123
124        // Tropical addition: max operation
125        if (tropical_product > max_val) {
126            max_val = tropical_product;
127        }
128    }
129
130    result[row * N + col] = max_val;
131}
132"#;
133
134/// Tropical vector addition: c = a ⊕ b where ⊕ is max operation
135const TROPICAL_VECTOR_ADD: &str = r#"
136@group(0) @binding(0) var<storage, read> vector_a: array<f32>;
137@group(0) @binding(1) var<storage, read> vector_b: array<f32>;
138@group(0) @binding(2) var<storage, read_write> result: array<f32>;
139
140@compute @workgroup_size(256)
141fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
142    let idx = global_id.x;
143
144    if (idx >= arrayLength(&vector_a)) {
145        return;
146    }
147
148    // Tropical addition: a ⊕ b = max(a, b)
149    result[idx] = max(vector_a[idx], vector_b[idx]);
150}
151"#;
152
153/// Tropical neural network layer computation
154const TROPICAL_NEURAL_NETWORK: &str = r#"
155@group(0) @binding(0) var<storage, read> input: array<f32>;
156@group(0) @binding(1) var<storage, read> weights: array<f32>;
157@group(0) @binding(2) var<storage, read> bias: array<f32>;
158@group(0) @binding(3) var<storage, read_write> output: array<f32>;
159@group(0) @binding(4) var<storage, read> dimensions: array<u32>; // [batch_size, input_size, output_size]
160
161@compute @workgroup_size(16, 16)
162fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
163    let batch_idx = global_id.x;
164    let output_idx = global_id.y;
165
166    let batch_size = dimensions[0];
167    let input_size = dimensions[1];
168    let output_size = dimensions[2];
169
170    if (batch_idx >= batch_size || output_idx >= output_size) {
171        return;
172    }
173
174    // Tropical neural network: max-plus linear transformation
175    var max_val = -3.4028235e+38; // -infinity
176
177    for (var i = 0u; i < input_size; i = i + 1u) {
178        let input_val = input[batch_idx * input_size + i];
179        let weight_val = weights[i * output_size + output_idx];
180
181        // Tropical multiplication: input ⊗ weight = input + weight
182        let product = input_val + weight_val;
183
184        // Tropical addition: max operation
185        if (product > max_val) {
186            max_val = product;
187        }
188    }
189
190    // Add bias (tropical addition = max)
191    let bias_val = bias[output_idx];
192    let final_result = max(max_val, bias_val);
193
194    output[batch_idx * output_size + output_idx] = final_result;
195}
196"#;
197
198// =====================================================================
199// DUAL NUMBER SHADERS (AUTOMATIC DIFFERENTIATION)
200// =====================================================================
201
202/// Forward-mode automatic differentiation for dual numbers
203const DUAL_FORWARD_AD: &str = r#"
204struct DualNumber {
205    real: f32,
206    dual: f32, // derivative part
207}
208
209@group(0) @binding(0) var<storage, read> input_dual: array<DualNumber>;
210@group(0) @binding(1) var<storage, read> operation_params: array<f32>;
211@group(0) @binding(2) var<storage, read_write> output_dual: array<DualNumber>;
212
213@compute @workgroup_size(256)
214fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
215    let idx = global_id.x;
216
217    if (idx >= arrayLength(&input_dual)) {
218        return;
219    }
220
221    let x = input_dual[idx];
222    let op_type = u32(operation_params[0]); // Operation type
223
224    var result: DualNumber;
225
226    // Forward-mode AD for different operations
227    switch (op_type) {
228        case 0u: { // sin(x): (sin(x), cos(x) * dx)
229            result.real = sin(x.real);
230            result.dual = cos(x.real) * x.dual;
231        }
232        case 1u: { // exp(x): (exp(x), exp(x) * dx)
233            let exp_val = exp(x.real);
234            result.real = exp_val;
235            result.dual = exp_val * x.dual;
236        }
237        case 2u: { // x^2: (x^2, 2x * dx)
238            result.real = x.real * x.real;
239            result.dual = 2.0 * x.real * x.dual;
240        }
241        case 3u: { // log(x): (log(x), (1/x) * dx)
242            result.real = log(x.real);
243            result.dual = x.dual / x.real;
244        }
245        default: { // identity
246            result = x;
247        }
248    }
249
250    output_dual[idx] = result;
251}
252"#;
253
254/// Batch gradient computation for multiple functions
255const DUAL_BATCH_GRADIENT: &str = r#"
256struct DualNumber {
257    real: f32,
258    dual: f32,
259}
260
261@group(0) @binding(0) var<storage, read> input_batch: array<DualNumber>;
262@group(0) @binding(1) var<storage, read> function_params: array<f32>;
263@group(0) @binding(2) var<storage, read_write> gradients: array<f32>;
264@group(0) @binding(3) var<storage, read> batch_info: array<u32>; // [batch_size, function_dim]
265
266@compute @workgroup_size(16, 16)
267fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
268    let batch_idx = global_id.x;
269    let var_idx = global_id.y;
270
271    let batch_size = batch_info[0];
272    let function_dim = batch_info[1];
273
274    if (batch_idx >= batch_size || var_idx >= function_dim) {
275        return;
276    }
277
278    let input_idx = batch_idx * function_dim + var_idx;
279    let x = input_batch[input_idx];
280
281    // Compute gradient of composite function f(g(x)) where g is parameterized
282    let param_idx = var_idx % 4u; // Assume up to 4 parameters per function
283    let param = function_params[param_idx];
284
285    // Example: f(x) = param * x^2 + sin(x), gradient = 2 * param * x + cos(x)
286    let gradient = 2.0 * param * x.real + cos(x.real);
287
288    gradients[input_idx] = gradient * x.dual;
289}
290"#;
291
292/// Chain rule implementation for complex function compositions
293const DUAL_CHAIN_RULE: &str = r#"
294struct DualNumber {
295    real: f32,
296    dual: f32,
297}
298
299@group(0) @binding(0) var<storage, read> inner_function: array<DualNumber>;
300@group(0) @binding(1) var<storage, read> outer_params: array<f32>;
301@group(0) @binding(2) var<storage, read_write> composed_result: array<DualNumber>;
302
303@compute @workgroup_size(256)
304fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
305    let idx = global_id.x;
306
307    if (idx >= arrayLength(&inner_function)) {
308        return;
309    }
310
311    let u = inner_function[idx]; // u = g(x), du/dx
312    let outer_type = u32(outer_params[0]);
313
314    var result: DualNumber;
315
316    // Chain rule: d/dx[f(g(x))] = f'(g(x)) * g'(x) = f'(u) * du/dx
317    switch (outer_type) {
318        case 0u: { // f(u) = sin(u)
319            result.real = sin(u.real);
320            result.dual = cos(u.real) * u.dual; // cos(u) * du/dx
321        }
322        case 1u: { // f(u) = u^3
323            result.real = u.real * u.real * u.real;
324            result.dual = 3.0 * u.real * u.real * u.dual; // 3u^2 * du/dx
325        }
326        case 2u: { // f(u) = exp(u)
327            let exp_u = exp(u.real);
328            result.real = exp_u;
329            result.dual = exp_u * u.dual; // exp(u) * du/dx
330        }
331        default: { // f(u) = u (identity)
332            result = u;
333        }
334    }
335
336    composed_result[idx] = result;
337}
338"#;
339
340// =====================================================================
341// FUSION SYSTEM SHADERS
342// =====================================================================
343
344/// TropicalDualClifford operations for LLM evaluation
345const TROPICAL_DUAL_CLIFFORD: &str = r#"
346struct TropicalNumber {
347    value: f32, // Tropical number value
348}
349
350struct DualNumber {
351    real: f32,
352    dual: f32,
353}
354
355struct Multivector {
356    coeffs: array<f32, 8>, // 3D Clifford algebra: 8 basis elements
357}
358
359struct TropicalDualClifford {
360    tropical: TropicalNumber,
361    dual: DualNumber,
362    clifford: Multivector,
363}
364
365@group(0) @binding(0) var<storage, read> input_batch: array<TropicalDualClifford>;
366@group(0) @binding(1) var<storage, read> operation_params: array<f32>;
367@group(0) @binding(2) var<storage, read_write> output_batch: array<TropicalDualClifford>;
368
369@compute @workgroup_size(64)
370fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
371    let idx = global_id.x;
372
373    if (idx >= arrayLength(&input_batch)) {
374        return;
375    }
376
377    let tdc = input_batch[idx];
378    let op_type = u32(operation_params[0]);
379
380    var result: TropicalDualClifford;
381
382    switch (op_type) {
383        case 0u: { // LLM attention computation
384            // Combine tropical path selection with dual gradients and geometric transformations
385            result.tropical.value = max(tdc.tropical.value, operation_params[1]);
386            result.dual.real = tdc.dual.real * operation_params[2];
387            result.dual.dual = tdc.dual.dual * operation_params[2];
388
389            // Geometric rotation in Clifford algebra
390            let angle = operation_params[3];
391            let cos_half = cos(angle * 0.5);
392            let sin_half = sin(angle * 0.5);
393
394            // Simple rotation around e12 plane
395            result.clifford.coeffs[0] = cos_half * tdc.clifford.coeffs[0]; // scalar
396            result.clifford.coeffs[1] = tdc.clifford.coeffs[1]; // e1
397            result.clifford.coeffs[2] = tdc.clifford.coeffs[2]; // e2
398            result.clifford.coeffs[3] = tdc.clifford.coeffs[3]; // e3
399            result.clifford.coeffs[4] = sin_half * tdc.clifford.coeffs[0]; // e12
400            result.clifford.coeffs[5] = tdc.clifford.coeffs[5]; // e13
401            result.clifford.coeffs[6] = tdc.clifford.coeffs[6]; // e23
402            result.clifford.coeffs[7] = tdc.clifford.coeffs[7]; // e123
403        }
404        default: {
405            result = tdc;
406        }
407    }
408
409    output_batch[idx] = result;
410}
411"#;
412
413/// Fusion attention mechanism using tropical algebra
414const FUSION_ATTENTION: &str = r#"
415@group(0) @binding(0) var<storage, read> queries: array<f32>;
416@group(0) @binding(1) var<storage, read> keys: array<f32>;
417@group(0) @binding(2) var<storage, read> values: array<f32>;
418@group(0) @binding(3) var<storage, read_write> attention_output: array<f32>;
419@group(0) @binding(4) var<storage, read> dimensions: array<u32>; // [seq_len, d_model]
420
421@compute @workgroup_size(16, 16)
422fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
423    let seq_pos = global_id.x;
424    let feature_idx = global_id.y;
425
426    let seq_len = dimensions[0];
427    let d_model = dimensions[1];
428
429    if (seq_pos >= seq_len || feature_idx >= d_model) {
430        return;
431    }
432
433    // Tropical attention: use max-plus algebra instead of softmax
434    var max_score = -3.4028235e+38; // -infinity
435    var best_key_idx = 0u;
436
437    // Find the key with maximum tropical attention score
438    for (var key_idx = 0u; key_idx < seq_len; key_idx = key_idx + 1u) {
439        var score = -3.4028235e+38;
440
441        // Compute tropical dot product: sum becomes max, product becomes sum
442        for (var d = 0u; d < d_model; d = d + 1u) {
443            let q = queries[seq_pos * d_model + d];
444            let k = keys[key_idx * d_model + d];
445
446            // Tropical multiplication: q ⊗ k = q + k
447            let tropical_product = q + k;
448
449            // Tropical sum: max operation
450            if (tropical_product > score) {
451                score = tropical_product;
452            }
453        }
454
455        if (score > max_score) {
456            max_score = score;
457            best_key_idx = key_idx;
458        }
459    }
460
461    // Tropical attention: select value from best key (winner-takes-all)
462    attention_output[seq_pos * d_model + feature_idx] =
463        values[best_key_idx * d_model + feature_idx];
464}
465"#;
466
467// =====================================================================
468// INFORMATION GEOMETRY SHADERS
469// =====================================================================
470
471/// Fisher information matrix computation
472const FISHER_INFORMATION: &str = r#"
473@group(0) @binding(0) var<storage, read> probability_params: array<f32>;
474@group(0) @binding(1) var<storage, read> data_points: array<f32>;
475@group(0) @binding(2) var<storage, read_write> fisher_matrix: array<f32>;
476@group(0) @binding(3) var<storage, read> dimensions: array<u32>; // [n_params, n_data]
477
478@compute @workgroup_size(16, 16)
479fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
480    let param_i = global_id.x;
481    let param_j = global_id.y;
482
483    let n_params = dimensions[0];
484    let n_data = dimensions[1];
485
486    if (param_i >= n_params || param_j >= n_params) {
487        return;
488    }
489
490    // Fisher Information Matrix: I[i,j] = E[∂²log p(x|θ)/∂θᵢ∂θⱼ]
491    var fisher_element = 0.0;
492
493    for (var data_idx = 0u; data_idx < n_data; data_idx = data_idx + 1u) {
494        let x = data_points[data_idx];
495
496        // Gaussian log-likelihood example: log p(x|μ,σ) = -½log(2πσ²) - (x-μ)²/(2σ²)
497        let mu = probability_params[0];
498        let sigma = probability_params[1];
499        let sigma_sq = sigma * sigma;
500
501        var d2_log_p = 0.0;
502
503        if (param_i == 0u && param_j == 0u) { // ∂²/∂μ²
504            d2_log_p = -1.0 / sigma_sq;
505        } else if (param_i == 1u && param_j == 1u) { // ∂²/∂σ²
506            let diff = x - mu;
507            d2_log_p = -1.0 / sigma_sq + 3.0 * diff * diff / (sigma_sq * sigma_sq);
508        } else if ((param_i == 0u && param_j == 1u) || (param_i == 1u && param_j == 0u)) { // ∂²/∂μ∂σ
509            let diff = x - mu;
510            d2_log_p = 2.0 * diff / (sigma_sq * sigma);
511        }
512
513        fisher_element += -d2_log_p; // Fisher = -E[Hessian of log-likelihood]
514    }
515
516    fisher_matrix[param_i * n_params + param_j] = fisher_element / f32(n_data);
517}
518"#;
519
520/// Batch KL divergence computation
521const KL_DIVERGENCE_BATCH: &str = r#"
522@group(0) @binding(0) var<storage, read> distribution_p: array<f32>;
523@group(0) @binding(1) var<storage, read> distribution_q: array<f32>;
524@group(0) @binding(2) var<storage, read_write> kl_divergences: array<f32>;
525@group(0) @binding(3) var<storage, read> batch_info: array<u32>; // [batch_size, dist_size]
526
527@compute @workgroup_size(256)
528fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
529    let batch_idx = global_id.x;
530    let batch_size = batch_info[0];
531    let dist_size = batch_info[1];
532
533    if (batch_idx >= batch_size) {
534        return;
535    }
536
537    // KL divergence: D_KL(P||Q) = Σ P(x) log(P(x)/Q(x))
538    var kl_div = 0.0;
539
540    for (var i = 0u; i < dist_size; i = i + 1u) {
541        let p_i = distribution_p[batch_idx * dist_size + i];
542        let q_i = distribution_q[batch_idx * dist_size + i];
543
544        if (p_i > 1e-10 && q_i > 1e-10) { // Avoid log(0)
545            kl_div += p_i * log(p_i / q_i);
546        }
547    }
548
549    kl_divergences[batch_idx] = kl_div;
550}
551"#;
552
553// =====================================================================
554// CELLULAR AUTOMATA SHADERS
555// =====================================================================
556
557/// Cellular automata evolution step
558const CA_EVOLUTION: &str = r#"
559@group(0) @binding(0) var<storage, read> current_state: array<u32>;
560@group(0) @binding(1) var<storage, read_write> next_state: array<u32>;
561@group(0) @binding(2) var<storage, read> rules: array<u32>;
562@group(0) @binding(3) var<storage, read> dimensions: array<u32>; // [width, height]
563
564@compute @workgroup_size(16, 16)
565fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
566    let x = global_id.x;
567    let y = global_id.y;
568
569    let width = dimensions[0];
570    let height = dimensions[1];
571
572    if (x >= width || y >= height) {
573        return;
574    }
575
576    let idx = y * width + x;
577    let current_cell = current_state[idx];
578
579    // Count alive neighbors (Moore neighborhood)
580    var alive_neighbors = 0u;
581
582    for (var dy = 0u; dy < 3u; dy = dy + 1u) {
583        for (var dx = 0u; dx < 3u; dx = dx + 1u) {
584            if (dx == 1u && dy == 1u) { continue; } // Skip center cell
585
586            let nx = (x + dx + width - 1u) % width; // Wrap around
587            let ny = (y + dy + height - 1u) % height;
588            let neighbor_idx = ny * width + nx;
589
590            if (current_state[neighbor_idx] == 1u) {
591                alive_neighbors = alive_neighbors + 1u;
592            }
593        }
594    }
595
596    // Conway's Game of Life rules (can be customized via rules buffer)
597    var new_state = 0u;
598
599    if (current_cell == 1u) { // Currently alive
600        if (alive_neighbors == 2u || alive_neighbors == 3u) {
601            new_state = 1u; // Survive
602        }
603    } else { // Currently dead
604        if (alive_neighbors == 3u) {
605            new_state = 1u; // Birth
606        }
607    }
608
609    next_state[idx] = new_state;
610}
611"#;
612
613/// Self-assembly pattern formation
614const CA_SELF_ASSEMBLY: &str = r#"
615@group(0) @binding(0) var<storage, read> particles: array<f32>; // [x, y, type, energy]
616@group(0) @binding(1) var<storage, read_write> new_particles: array<f32>;
617@group(0) @binding(2) var<storage, read> assembly_rules: array<f32>;
618@group(0) @binding(3) var<storage, read> simulation_params: array<u32>; // [n_particles, grid_size]
619
620@compute @workgroup_size(64)
621fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
622    let particle_idx = global_id.x;
623    let n_particles = simulation_params[0];
624    let grid_size = simulation_params[1];
625
626    if (particle_idx >= n_particles) {
627        return;
628    }
629
630    let base_idx = particle_idx * 4u;
631    let x = particles[base_idx];
632    let y = particles[base_idx + 1u];
633    let particle_type = particles[base_idx + 2u];
634    let energy = particles[base_idx + 3u];
635
636    // Self-assembly based on local interactions
637    var new_x = x;
638    var new_y = y;
639    var new_energy = energy;
640
641    // Calculate forces from nearby particles
642    var force_x = 0.0;
643    var force_y = 0.0;
644
645    for (var other_idx = 0u; other_idx < n_particles; other_idx = other_idx + 1u) {
646        if (other_idx == particle_idx) { continue; }
647
648        let other_base = other_idx * 4u;
649        let other_x = particles[other_base];
650        let other_y = particles[other_base + 1u];
651        let other_type = particles[other_base + 2u];
652
653        let dx = other_x - x;
654        let dy = other_y - y;
655        let distance = sqrt(dx * dx + dy * dy);
656
657        if (distance < 5.0 && distance > 0.1) { // Interaction range
658            let interaction_strength = assembly_rules[u32(particle_type) * 4u + u32(other_type)];
659
660            // Attractive/repulsive force based on particle types
661            let force_magnitude = interaction_strength / (distance * distance);
662            force_x += force_magnitude * dx / distance;
663            force_y += force_magnitude * dy / distance;
664        }
665    }
666
667    // Update position based on forces
668    new_x += force_x * 0.1; // time step
669    new_y += force_y * 0.1;
670
671    // Keep within bounds
672    new_x = clamp(new_x, 0.0, f32(grid_size));
673    new_y = clamp(new_y, 0.0, f32(grid_size));
674
675    // Energy dissipation
676    new_energy = energy * 0.99;
677
678    new_particles[base_idx] = new_x;
679    new_particles[base_idx + 1u] = new_y;
680    new_particles[base_idx + 2u] = particle_type;
681    new_particles[base_idx + 3u] = new_energy;
682}
683"#;
684
685// =====================================================================
686// ENUMERATIVE GEOMETRY SHADERS
687// =====================================================================
688
689/// Intersection theory computations
690const INTERSECTION_THEORY: &str = r#"
691struct RationalNumber {
692    numerator: i32,
693    denominator: i32,
694}
695
696@group(0) @binding(0) var<storage, read> chow_class_a: array<RationalNumber>;
697@group(0) @binding(1) var<storage, read> chow_class_b: array<RationalNumber>;
698@group(0) @binding(2) var<storage, read_write> intersection_result: array<RationalNumber>;
699@group(0) @binding(3) var<storage, read> geometry_params: array<u32>; // [dimension, degree_a, degree_b]
700
701fn gcd(a: u32, b: u32) -> u32 {
702    if (b == 0u) { return a; }
703    return gcd(b, a % b);
704}
705
706fn add_rationals(a: RationalNumber, b: RationalNumber) -> RationalNumber {
707    let num = a.numerator * b.denominator + b.numerator * a.denominator;
708    let den = a.denominator * b.denominator;
709    let g = gcd(u32(abs(num)), u32(abs(den)));
710
711    return RationalNumber(num / i32(g), den / i32(g));
712}
713
714fn multiply_rationals(a: RationalNumber, b: RationalNumber) -> RationalNumber {
715    let num = a.numerator * b.numerator;
716    let den = a.denominator * b.denominator;
717    let g = gcd(u32(abs(num)), u32(abs(den)));
718
719    return RationalNumber(num / i32(g), den / i32(g));
720}
721
722@compute @workgroup_size(256)
723fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
724    let idx = global_id.x;
725
726    if (idx >= arrayLength(&chow_class_a)) {
727        return;
728    }
729
730    let dimension = geometry_params[0];
731    let degree_a = geometry_params[1];
732    let degree_b = geometry_params[2];
733
734    // Intersection product in Chow ring: A · B
735    // For simplicity, implement as pointwise multiplication for this example
736    let a = chow_class_a[idx];
737    let b = chow_class_b[idx];
738
739    // Check degree compatibility (degree_a + degree_b ≤ dimension)
740    if (degree_a + degree_b <= dimension) {
741        intersection_result[idx] = multiply_rationals(a, b);
742    } else {
743        intersection_result[idx] = RationalNumber(0, 1); // Zero class
744    }
745}
746"#;
747
748/// Schubert calculus computations
749const SCHUBERT_CALCULUS: &str = r#"
750@group(0) @binding(0) var<storage, read> partition_a: array<u32>;
751@group(0) @binding(1) var<storage, read> partition_b: array<u32>;
752@group(0) @binding(2) var<storage, read_write> littlewood_coeff: array<u32>;
753@group(0) @binding(3) var<storage, read> grassmann_params: array<u32>; // [n, k]
754
755@compute @workgroup_size(128)
756fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
757    let coeff_idx = global_id.x;
758
759    let n = grassmann_params[0]; // Dimension of ambient space
760    let k = grassmann_params[1]; // Dimension of subspaces
761
762    if (coeff_idx >= arrayLength(&littlewood_coeff)) {
763        return;
764    }
765
766    // Schubert calculus: compute Littlewood-Richardson coefficients
767    // This is a simplified version - full LR coefficients require more complex algorithms
768
769    let max_parts = min(arrayLength(&partition_a), arrayLength(&partition_b));
770    var coefficient = 0u;
771
772    // Simplified intersection number computation
773    for (var i = 0u; i < max_parts; i = i + 1u) {
774        let part_a = partition_a[i];
775        let part_b = partition_b[i];
776
777        // Check compatibility with Grassmannian Gr(k, n)
778        if (part_a <= n - k && part_b <= n - k) {
779            coefficient += part_a * part_b;
780        }
781    }
782
783    littlewood_coeff[coeff_idx] = coefficient;
784}
785"#;
786
787#[cfg(test)]
788mod tests {
789    use super::*;
790
791    #[test]
792    fn test_shader_library_creation() {
793        let library = ShaderLibrary::new();
794        let shaders = library.list_shaders();
795
796        // Should have shaders for all mathematical domains
797        assert!(shaders.contains(&"tropical_matrix_multiply".to_string()));
798        assert!(shaders.contains(&"dual_forward_ad".to_string()));
799        assert!(shaders.contains(&"tropical_dual_clifford".to_string()));
800        assert!(shaders.contains(&"fisher_information".to_string()));
801        assert!(shaders.contains(&"ca_evolution".to_string()));
802        assert!(shaders.contains(&"intersection_theory".to_string()));
803    }
804
805    #[test]
806    fn test_shader_retrieval() {
807        let library = ShaderLibrary::new();
808
809        let shader = library.get_shader("tropical_matrix_multiply");
810        assert!(shader.is_some());
811        assert!(shader.unwrap().contains("@compute"));
812        assert!(shader.unwrap().contains("tropical"));
813    }
814
815    #[test]
816    fn test_shader_constants() {
817        assert_eq!(TROPICAL_SHADERS.len(), 3);
818        assert_eq!(DUAL_SHADERS.len(), 3);
819        assert_eq!(FUSION_SHADERS.len(), 2);
820    }
821}