1use std::collections::HashMap;
7
8pub struct ShaderLibrary {
10 shaders: HashMap<String, &'static str>,
11}
12
13impl ShaderLibrary {
14 pub fn new() -> Self {
16 let mut shaders = HashMap::new();
17
18 shaders.insert(
20 "tropical_matrix_multiply".to_string(),
21 TROPICAL_MATRIX_MULTIPLY,
22 );
23 shaders.insert("tropical_vector_add".to_string(), TROPICAL_VECTOR_ADD);
24 shaders.insert(
25 "tropical_neural_network".to_string(),
26 TROPICAL_NEURAL_NETWORK,
27 );
28
29 shaders.insert("dual_forward_ad".to_string(), DUAL_FORWARD_AD);
31 shaders.insert("dual_batch_gradient".to_string(), DUAL_BATCH_GRADIENT);
32 shaders.insert("dual_chain_rule".to_string(), DUAL_CHAIN_RULE);
33
34 shaders.insert("tropical_dual_clifford".to_string(), TROPICAL_DUAL_CLIFFORD);
36 shaders.insert("fusion_attention".to_string(), FUSION_ATTENTION);
37
38 shaders.insert("fisher_information".to_string(), FISHER_INFORMATION);
40 shaders.insert("kl_divergence_batch".to_string(), KL_DIVERGENCE_BATCH);
41
42 shaders.insert("ca_evolution".to_string(), CA_EVOLUTION);
44 shaders.insert("ca_self_assembly".to_string(), CA_SELF_ASSEMBLY);
45 shaders.insert("rule_application".to_string(), RULE_APPLICATION);
46 shaders.insert("energy_calculation".to_string(), ENERGY_CALCULATION);
47 shaders.insert("neighbor_extraction".to_string(), NEIGHBOR_EXTRACTION);
48
49 shaders.insert("intersection_theory".to_string(), INTERSECTION_THEORY);
51 shaders.insert("schubert_calculus".to_string(), SCHUBERT_CALCULUS);
52
53 shaders.insert("holographic_batch_bind".to_string(), HOLOGRAPHIC_BATCH_BIND);
55 shaders.insert(
56 "holographic_batch_similarity".to_string(),
57 HOLOGRAPHIC_BATCH_SIMILARITY,
58 );
59 shaders.insert("holographic_bundle_all".to_string(), HOLOGRAPHIC_BUNDLE_ALL);
60 shaders.insert(
61 "holographic_resonator_step".to_string(),
62 HOLOGRAPHIC_RESONATOR_STEP,
63 );
64
65 Self { shaders }
66 }
67
68 pub fn get_shader(&self, name: &str) -> Option<&'static str> {
70 self.shaders.get(name).copied()
71 }
72
73 pub fn list_shaders(&self) -> Vec<String> {
75 self.shaders.keys().cloned().collect()
76 }
77}
78
79impl Default for ShaderLibrary {
80 fn default() -> Self {
81 Self::new()
82 }
83}
84
85pub const TROPICAL_SHADERS: &[(&str, &str)] = &[
87 ("tropical_matrix_multiply", TROPICAL_MATRIX_MULTIPLY),
88 ("tropical_vector_add", TROPICAL_VECTOR_ADD),
89 ("tropical_neural_network", TROPICAL_NEURAL_NETWORK),
90];
91
92pub const DUAL_SHADERS: &[(&str, &str)] = &[
94 ("dual_forward_ad", DUAL_FORWARD_AD),
95 ("dual_batch_gradient", DUAL_BATCH_GRADIENT),
96 ("dual_chain_rule", DUAL_CHAIN_RULE),
97];
98
99pub const FUSION_SHADERS: &[(&str, &str)] = &[
101 ("tropical_dual_clifford", TROPICAL_DUAL_CLIFFORD),
102 ("fusion_attention", FUSION_ATTENTION),
103];
104
105pub const HOLOGRAPHIC_SHADERS: &[(&str, &str)] = &[
107 ("holographic_batch_bind", HOLOGRAPHIC_BATCH_BIND),
108 ("holographic_batch_similarity", HOLOGRAPHIC_BATCH_SIMILARITY),
109 ("holographic_bundle_all", HOLOGRAPHIC_BUNDLE_ALL),
110 ("holographic_resonator_step", HOLOGRAPHIC_RESONATOR_STEP),
111];
112
113const TROPICAL_MATRIX_MULTIPLY: &str = r#"
119@group(0) @binding(0) var<storage, read> matrix_a: array<f32>;
120@group(0) @binding(1) var<storage, read> matrix_b: array<f32>;
121@group(0) @binding(2) var<storage, read_write> result: array<f32>;
122@group(0) @binding(3) var<storage, read> dimensions: array<u32>; // [M, N, K]
123
124@compute @workgroup_size(16, 16)
125fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
126 let M = dimensions[0];
127 let N = dimensions[1];
128 let K = dimensions[2];
129
130 let row = global_id.x;
131 let col = global_id.y;
132
133 if (row >= M || col >= N) {
134 return;
135 }
136
137 // Tropical matrix multiplication: (A ⊗ B)[i,j] = max_k(A[i,k] + B[k,j])
138 var max_val = -3.4028235e+38; // -infinity in tropical algebra
139
140 for (var k = 0u; k < K; k = k + 1u) {
141 let a_val = matrix_a[row * K + k];
142 let b_val = matrix_b[k * N + col];
143
144 // Tropical multiplication: a ⊗ b = a + b
145 let tropical_product = a_val + b_val;
146
147 // Tropical addition: max operation
148 if (tropical_product > max_val) {
149 max_val = tropical_product;
150 }
151 }
152
153 result[row * N + col] = max_val;
154}
155"#;
156
157const TROPICAL_VECTOR_ADD: &str = r#"
159@group(0) @binding(0) var<storage, read> vector_a: array<f32>;
160@group(0) @binding(1) var<storage, read> vector_b: array<f32>;
161@group(0) @binding(2) var<storage, read_write> result: array<f32>;
162
163@compute @workgroup_size(256)
164fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
165 let idx = global_id.x;
166
167 if (idx >= arrayLength(&vector_a)) {
168 return;
169 }
170
171 // Tropical addition: a ⊕ b = max(a, b)
172 result[idx] = max(vector_a[idx], vector_b[idx]);
173}
174"#;
175
176const TROPICAL_NEURAL_NETWORK: &str = r#"
178@group(0) @binding(0) var<storage, read> input: array<f32>;
179@group(0) @binding(1) var<storage, read> weights: array<f32>;
180@group(0) @binding(2) var<storage, read> bias: array<f32>;
181@group(0) @binding(3) var<storage, read_write> output: array<f32>;
182@group(0) @binding(4) var<storage, read> dimensions: array<u32>; // [batch_size, input_size, output_size]
183
184@compute @workgroup_size(16, 16)
185fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
186 let batch_idx = global_id.x;
187 let output_idx = global_id.y;
188
189 let batch_size = dimensions[0];
190 let input_size = dimensions[1];
191 let output_size = dimensions[2];
192
193 if (batch_idx >= batch_size || output_idx >= output_size) {
194 return;
195 }
196
197 // Tropical neural network: max-plus linear transformation
198 var max_val = -3.4028235e+38; // -infinity
199
200 for (var i = 0u; i < input_size; i = i + 1u) {
201 let input_val = input[batch_idx * input_size + i];
202 let weight_val = weights[i * output_size + output_idx];
203
204 // Tropical multiplication: input ⊗ weight = input + weight
205 let product = input_val + weight_val;
206
207 // Tropical addition: max operation
208 if (product > max_val) {
209 max_val = product;
210 }
211 }
212
213 // Add bias (tropical addition = max)
214 let bias_val = bias[output_idx];
215 let final_result = max(max_val, bias_val);
216
217 output[batch_idx * output_size + output_idx] = final_result;
218}
219"#;
220
221const DUAL_FORWARD_AD: &str = r#"
227struct DualNumber {
228 real: f32,
229 dual: f32, // derivative part
230}
231
232@group(0) @binding(0) var<storage, read> input_dual: array<DualNumber>;
233@group(0) @binding(1) var<storage, read> operation_params: array<f32>;
234@group(0) @binding(2) var<storage, read_write> output_dual: array<DualNumber>;
235
236@compute @workgroup_size(256)
237fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
238 let idx = global_id.x;
239
240 if (idx >= arrayLength(&input_dual)) {
241 return;
242 }
243
244 let x = input_dual[idx];
245 let op_type = u32(operation_params[0]); // Operation type
246
247 var result: DualNumber;
248
249 // Forward-mode AD for different operations
250 switch (op_type) {
251 case 0u: { // sin(x): (sin(x), cos(x) * dx)
252 result.real = sin(x.real);
253 result.dual = cos(x.real) * x.dual;
254 }
255 case 1u: { // exp(x): (exp(x), exp(x) * dx)
256 let exp_val = exp(x.real);
257 result.real = exp_val;
258 result.dual = exp_val * x.dual;
259 }
260 case 2u: { // x^2: (x^2, 2x * dx)
261 result.real = x.real * x.real;
262 result.dual = 2.0 * x.real * x.dual;
263 }
264 case 3u: { // log(x): (log(x), (1/x) * dx)
265 result.real = log(x.real);
266 result.dual = x.dual / x.real;
267 }
268 default: { // identity
269 result = x;
270 }
271 }
272
273 output_dual[idx] = result;
274}
275"#;
276
277const DUAL_BATCH_GRADIENT: &str = r#"
279struct DualNumber {
280 real: f32,
281 dual: f32,
282}
283
284@group(0) @binding(0) var<storage, read> input_batch: array<DualNumber>;
285@group(0) @binding(1) var<storage, read> function_params: array<f32>;
286@group(0) @binding(2) var<storage, read_write> gradients: array<f32>;
287@group(0) @binding(3) var<storage, read> batch_info: array<u32>; // [batch_size, function_dim]
288
289@compute @workgroup_size(16, 16)
290fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
291 let batch_idx = global_id.x;
292 let var_idx = global_id.y;
293
294 let batch_size = batch_info[0];
295 let function_dim = batch_info[1];
296
297 if (batch_idx >= batch_size || var_idx >= function_dim) {
298 return;
299 }
300
301 let input_idx = batch_idx * function_dim + var_idx;
302 let x = input_batch[input_idx];
303
304 // Compute gradient of composite function f(g(x)) where g is parameterized
305 let param_idx = var_idx % 4u; // Assume up to 4 parameters per function
306 let param = function_params[param_idx];
307
308 // Example: f(x) = param * x^2 + sin(x), gradient = 2 * param * x + cos(x)
309 let gradient = 2.0 * param * x.real + cos(x.real);
310
311 gradients[input_idx] = gradient * x.dual;
312}
313"#;
314
315const DUAL_CHAIN_RULE: &str = r#"
317struct DualNumber {
318 real: f32,
319 dual: f32,
320}
321
322@group(0) @binding(0) var<storage, read> inner_function: array<DualNumber>;
323@group(0) @binding(1) var<storage, read> outer_params: array<f32>;
324@group(0) @binding(2) var<storage, read_write> composed_result: array<DualNumber>;
325
326@compute @workgroup_size(256)
327fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
328 let idx = global_id.x;
329
330 if (idx >= arrayLength(&inner_function)) {
331 return;
332 }
333
334 let u = inner_function[idx]; // u = g(x), du/dx
335 let outer_type = u32(outer_params[0]);
336
337 var result: DualNumber;
338
339 // Chain rule: d/dx[f(g(x))] = f'(g(x)) * g'(x) = f'(u) * du/dx
340 switch (outer_type) {
341 case 0u: { // f(u) = sin(u)
342 result.real = sin(u.real);
343 result.dual = cos(u.real) * u.dual; // cos(u) * du/dx
344 }
345 case 1u: { // f(u) = u^3
346 result.real = u.real * u.real * u.real;
347 result.dual = 3.0 * u.real * u.real * u.dual; // 3u^2 * du/dx
348 }
349 case 2u: { // f(u) = exp(u)
350 let exp_u = exp(u.real);
351 result.real = exp_u;
352 result.dual = exp_u * u.dual; // exp(u) * du/dx
353 }
354 default: { // f(u) = u (identity)
355 result = u;
356 }
357 }
358
359 composed_result[idx] = result;
360}
361"#;
362
363const TROPICAL_DUAL_CLIFFORD: &str = r#"
369struct TropicalNumber {
370 value: f32, // Tropical number value
371}
372
373struct DualNumber {
374 real: f32,
375 dual: f32,
376}
377
378struct Multivector {
379 coeffs: array<f32, 8>, // 3D Clifford algebra: 8 basis elements
380}
381
382struct TropicalDualClifford {
383 tropical: TropicalNumber,
384 dual: DualNumber,
385 clifford: Multivector,
386}
387
388@group(0) @binding(0) var<storage, read> input_batch: array<TropicalDualClifford>;
389@group(0) @binding(1) var<storage, read> operation_params: array<f32>;
390@group(0) @binding(2) var<storage, read_write> output_batch: array<TropicalDualClifford>;
391
392@compute @workgroup_size(64)
393fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
394 let idx = global_id.x;
395
396 if (idx >= arrayLength(&input_batch)) {
397 return;
398 }
399
400 let tdc = input_batch[idx];
401 let op_type = u32(operation_params[0]);
402
403 var result: TropicalDualClifford;
404
405 switch (op_type) {
406 case 0u: { // LLM attention computation
407 // Combine tropical path selection with dual gradients and geometric transformations
408 result.tropical.value = max(tdc.tropical.value, operation_params[1]);
409 result.dual.real = tdc.dual.real * operation_params[2];
410 result.dual.dual = tdc.dual.dual * operation_params[2];
411
412 // Geometric rotation in Clifford algebra
413 let angle = operation_params[3];
414 let cos_half = cos(angle * 0.5);
415 let sin_half = sin(angle * 0.5);
416
417 // Simple rotation around e12 plane
418 result.clifford.coeffs[0] = cos_half * tdc.clifford.coeffs[0]; // scalar
419 result.clifford.coeffs[1] = tdc.clifford.coeffs[1]; // e1
420 result.clifford.coeffs[2] = tdc.clifford.coeffs[2]; // e2
421 result.clifford.coeffs[3] = tdc.clifford.coeffs[3]; // e3
422 result.clifford.coeffs[4] = sin_half * tdc.clifford.coeffs[0]; // e12
423 result.clifford.coeffs[5] = tdc.clifford.coeffs[5]; // e13
424 result.clifford.coeffs[6] = tdc.clifford.coeffs[6]; // e23
425 result.clifford.coeffs[7] = tdc.clifford.coeffs[7]; // e123
426 }
427 default: {
428 result = tdc;
429 }
430 }
431
432 output_batch[idx] = result;
433}
434"#;
435
436const FUSION_ATTENTION: &str = r#"
438@group(0) @binding(0) var<storage, read> queries: array<f32>;
439@group(0) @binding(1) var<storage, read> keys: array<f32>;
440@group(0) @binding(2) var<storage, read> values: array<f32>;
441@group(0) @binding(3) var<storage, read_write> attention_output: array<f32>;
442@group(0) @binding(4) var<storage, read> dimensions: array<u32>; // [seq_len, d_model]
443
444@compute @workgroup_size(16, 16)
445fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
446 let seq_pos = global_id.x;
447 let feature_idx = global_id.y;
448
449 let seq_len = dimensions[0];
450 let d_model = dimensions[1];
451
452 if (seq_pos >= seq_len || feature_idx >= d_model) {
453 return;
454 }
455
456 // Tropical attention: use max-plus algebra instead of softmax
457 var max_score = -3.4028235e+38; // -infinity
458 var best_key_idx = 0u;
459
460 // Find the key with maximum tropical attention score
461 for (var key_idx = 0u; key_idx < seq_len; key_idx = key_idx + 1u) {
462 var score = -3.4028235e+38;
463
464 // Compute tropical dot product: sum becomes max, product becomes sum
465 for (var d = 0u; d < d_model; d = d + 1u) {
466 let q = queries[seq_pos * d_model + d];
467 let k = keys[key_idx * d_model + d];
468
469 // Tropical multiplication: q ⊗ k = q + k
470 let tropical_product = q + k;
471
472 // Tropical sum: max operation
473 if (tropical_product > score) {
474 score = tropical_product;
475 }
476 }
477
478 if (score > max_score) {
479 max_score = score;
480 best_key_idx = key_idx;
481 }
482 }
483
484 // Tropical attention: select value from best key (winner-takes-all)
485 attention_output[seq_pos * d_model + feature_idx] =
486 values[best_key_idx * d_model + feature_idx];
487}
488"#;
489
490pub const HOLOGRAPHIC_BATCH_BIND: &str = r#"
497// TropicalDualClifford representation for GPU
498// We use a simplified 8-dimensional Clifford representation
499struct TDC {
500 // Tropical component (max element)
501 tropical: f32,
502 // Dual component (real and dual parts)
503 dual_real: f32,
504 dual_dual: f32,
505 // Clifford algebra coefficients (8D: scalar, 3 vectors, 3 bivectors, pseudoscalar)
506 clifford: array<f32, 8>,
507 // Padding for alignment
508 _padding: array<f32, 5>,
509}
510
511@group(0) @binding(0) var<storage, read> keys: array<TDC>;
512@group(0) @binding(1) var<storage, read> values: array<TDC>;
513@group(0) @binding(2) var<storage, read_write> results: array<TDC>;
514@group(0) @binding(3) var<uniform> params: array<u32, 4>; // [count, 0, 0, 0]
515
516// Cayley table for 3D Clifford algebra Cl(3,0)
517// Product signs: e_i * e_j where i,j are grade indices
518fn cayley_sign(i: u32, j: u32) -> f32 {
519 // Simplified: for vectors e_i * e_i = 1, e_i * e_j = -e_j * e_i for i != j
520 let signs = array<array<f32, 8>, 8>(
521 // 1 e1 e2 e3 e12 e13 e23 e123
522 array<f32, 8>(1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0), // 1
523 array<f32, 8>(1.0, 1.0, 1.0, 1.0, 1.0, 1.0, -1.0, 1.0), // e1
524 array<f32, 8>(1.0, -1.0, 1.0, 1.0, 1.0, -1.0, 1.0, 1.0), // e2
525 array<f32, 8>(1.0, -1.0, -1.0, 1.0, 1.0, 1.0, 1.0, 1.0), // e3
526 array<f32, 8>(1.0, -1.0, 1.0, -1.0, -1.0, 1.0, 1.0, 1.0), // e12
527 array<f32, 8>(1.0, -1.0, 1.0, 1.0, -1.0, -1.0, 1.0, 1.0), // e13
528 array<f32, 8>(1.0, 1.0, -1.0, 1.0, -1.0, -1.0, -1.0, 1.0), // e23
529 array<f32, 8>(1.0, 1.0, 1.0, -1.0, 1.0, -1.0, 1.0, -1.0), // e123
530 );
531 return signs[i][j];
532}
533
534// Result index for e_i * e_j
535fn cayley_index(i: u32, j: u32) -> u32 {
536 let indices = array<array<u32, 8>, 8>(
537 // 1 e1 e2 e3 e12 e13 e23 e123
538 array<u32, 8>(0u, 1u, 2u, 3u, 4u, 5u, 6u, 7u), // 1
539 array<u32, 8>(1u, 0u, 4u, 5u, 2u, 3u, 7u, 6u), // e1
540 array<u32, 8>(2u, 4u, 0u, 6u, 1u, 7u, 3u, 5u), // e2
541 array<u32, 8>(3u, 5u, 6u, 0u, 7u, 1u, 2u, 4u), // e3
542 array<u32, 8>(4u, 2u, 1u, 7u, 0u, 6u, 5u, 3u), // e12
543 array<u32, 8>(5u, 3u, 7u, 1u, 6u, 0u, 4u, 2u), // e13
544 array<u32, 8>(6u, 7u, 3u, 2u, 5u, 4u, 0u, 1u), // e23
545 array<u32, 8>(7u, 6u, 5u, 4u, 3u, 2u, 1u, 0u), // e123
546 );
547 return indices[i][j];
548}
549
550@compute @workgroup_size(64)
551fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
552 let idx = global_id.x;
553 let count = params[0];
554
555 if (idx >= count) {
556 return;
557 }
558
559 let key = keys[idx];
560 let value = values[idx];
561
562 var result: TDC;
563
564 // Binding uses geometric product on Clifford components
565 // result = key * value (geometric product)
566 for (var i = 0u; i < 8u; i = i + 1u) {
567 result.clifford[i] = 0.0;
568 }
569
570 for (var i = 0u; i < 8u; i = i + 1u) {
571 for (var j = 0u; j < 8u; j = j + 1u) {
572 let target = cayley_index(i, j);
573 let sign = cayley_sign(i, j);
574 result.clifford[target] += sign * key.clifford[i] * value.clifford[j];
575 }
576 }
577
578 // Tropical: max of both (binding produces new tropical value)
579 result.tropical = max(key.tropical, value.tropical);
580
581 // Dual: product rule for dual numbers
582 result.dual_real = key.dual_real * value.dual_real;
583 result.dual_dual = key.dual_real * value.dual_dual + key.dual_dual * value.dual_real;
584
585 results[idx] = result;
586}
587"#;
588
589pub const HOLOGRAPHIC_BATCH_SIMILARITY: &str = r#"
592struct TDC {
593 tropical: f32,
594 dual_real: f32,
595 dual_dual: f32,
596 clifford: array<f32, 8>,
597 _padding: array<f32, 5>,
598}
599
600@group(0) @binding(0) var<storage, read> vectors_a: array<TDC>;
601@group(0) @binding(1) var<storage, read> vectors_b: array<TDC>;
602@group(0) @binding(2) var<storage, read_write> similarities: array<f32>;
603@group(0) @binding(3) var<uniform> params: array<u32, 4>; // [count_a, count_b, mode, 0]
604 // mode: 0=pairwise (a[i] vs b[i]), 1=matrix (all pairs)
605
606// Compute reverse of multivector (flip sign of grades 2 and 3)
607fn reverse_sign(grade: u32) -> f32 {
608 // Grade 0: +1, Grade 1: +1, Grade 2: -1, Grade 3: -1
609 // For Cl(3,0): indices 0=scalar(g0), 1-3=vectors(g1), 4-6=bivectors(g2), 7=trivector(g3)
610 let signs = array<f32, 8>(1.0, 1.0, 1.0, 1.0, -1.0, -1.0, -1.0, -1.0);
611 return signs[grade];
612}
613
614// Compute scalar product <A B̃>₀ - the proper inner product for similarity
615fn scalar_product_with_reverse(a: TDC, b: TDC) -> f32 {
616 var result = 0.0;
617
618 // For each basis element, compute contribution to scalar part
619 // Using simplified formula: sum of a[i] * b[i] * reverse_sign(i) * cayley_contribution_to_scalar
620 // For diagonal elements (same basis): e_i * e_i contributes to scalar
621 for (var i = 0u; i < 8u; i = i + 1u) {
622 result += a.clifford[i] * b.clifford[i] * reverse_sign(i);
623 }
624
625 return result;
626}
627
628fn norm(v: TDC) -> f32 {
629 var sum = 0.0;
630 for (var i = 0u; i < 8u; i = i + 1u) {
631 sum += v.clifford[i] * v.clifford[i];
632 }
633 return sqrt(sum);
634}
635
636@compute @workgroup_size(256)
637fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
638 let idx = global_id.x;
639 let count_a = params[0];
640 let count_b = params[1];
641 let mode = params[2];
642
643 if (mode == 0u) {
644 // Pairwise mode: similarities[i] = sim(a[i], b[i])
645 if (idx >= count_a) {
646 return;
647 }
648
649 let a = vectors_a[idx];
650 let b = vectors_b[idx];
651
652 let norm_a = norm(a);
653 let norm_b = norm(b);
654
655 if (norm_a < 1e-10 || norm_b < 1e-10) {
656 similarities[idx] = 0.0;
657 return;
658 }
659
660 let inner = scalar_product_with_reverse(a, b);
661 similarities[idx] = inner / (norm_a * norm_b);
662 } else {
663 // Matrix mode: similarities[i * count_b + j] = sim(a[i], b[j])
664 let total = count_a * count_b;
665 if (idx >= total) {
666 return;
667 }
668
669 let i = idx / count_b;
670 let j = idx % count_b;
671
672 let a = vectors_a[i];
673 let b = vectors_b[j];
674
675 let norm_a = norm(a);
676 let norm_b = norm(b);
677
678 if (norm_a < 1e-10 || norm_b < 1e-10) {
679 similarities[idx] = 0.0;
680 return;
681 }
682
683 let inner = scalar_product_with_reverse(a, b);
684 similarities[idx] = inner / (norm_a * norm_b);
685 }
686}
687"#;
688
689pub const HOLOGRAPHIC_BUNDLE_ALL: &str = r#"
691struct TDC {
692 tropical: f32,
693 dual_real: f32,
694 dual_dual: f32,
695 clifford: array<f32, 8>,
696 _padding: array<f32, 5>,
697}
698
699@group(0) @binding(0) var<storage, read> vectors: array<TDC>;
700@group(0) @binding(1) var<storage, read_write> result: array<TDC>; // Single output
701@group(0) @binding(2) var<uniform> params: vec4<f32>; // [count, beta, normalize, 0]
702
703// Workgroup shared memory for parallel reduction
704var<workgroup> shared_clifford: array<array<f32, 8>, 64>;
705var<workgroup> shared_tropical: array<f32, 64>;
706var<workgroup> shared_dual_real: array<f32, 64>;
707var<workgroup> shared_dual_dual: array<f32, 64>;
708
709@compute @workgroup_size(64)
710fn main(
711 @builtin(global_invocation_id) global_id: vec3<u32>,
712 @builtin(local_invocation_id) local_id: vec3<u32>,
713 @builtin(workgroup_id) workgroup_id: vec3<u32>
714) {
715 let idx = global_id.x;
716 let local_idx = local_id.x;
717 let count = u32(params.x);
718 let beta = params.y;
719 let do_normalize = params.z > 0.5;
720
721 // Initialize shared memory
722 for (var i = 0u; i < 8u; i = i + 1u) {
723 shared_clifford[local_idx][i] = 0.0;
724 }
725 shared_tropical[local_idx] = -3.4028235e+38; // -inf for tropical
726 shared_dual_real[local_idx] = 0.0;
727 shared_dual_dual[local_idx] = 0.0;
728
729 // Load data into shared memory
730 if (idx < count) {
731 let v = vectors[idx];
732 for (var i = 0u; i < 8u; i = i + 1u) {
733 shared_clifford[local_idx][i] = v.clifford[i];
734 }
735 shared_tropical[local_idx] = v.tropical;
736 shared_dual_real[local_idx] = v.dual_real;
737 shared_dual_dual[local_idx] = v.dual_dual;
738 }
739
740 workgroupBarrier();
741
742 // Parallel reduction
743 for (var stride = 32u; stride > 0u; stride = stride / 2u) {
744 if (local_idx < stride && local_idx + stride < 64u) {
745 // Bundle Clifford components (sum/average)
746 for (var i = 0u; i < 8u; i = i + 1u) {
747 shared_clifford[local_idx][i] += shared_clifford[local_idx + stride][i];
748 }
749 // Tropical: take max
750 shared_tropical[local_idx] = max(shared_tropical[local_idx], shared_tropical[local_idx + stride]);
751 // Dual: sum
752 shared_dual_real[local_idx] += shared_dual_real[local_idx + stride];
753 shared_dual_dual[local_idx] += shared_dual_dual[local_idx + stride];
754 }
755 workgroupBarrier();
756 }
757
758 // Thread 0 writes result
759 if (local_idx == 0u) {
760 var final_result: TDC;
761
762 // Average the Clifford components
763 let scale = 1.0 / f32(count);
764 for (var i = 0u; i < 8u; i = i + 1u) {
765 final_result.clifford[i] = shared_clifford[0][i] * scale;
766 }
767
768 final_result.tropical = shared_tropical[0];
769 final_result.dual_real = shared_dual_real[0] * scale;
770 final_result.dual_dual = shared_dual_dual[0] * scale;
771
772 // Optionally normalize
773 if (do_normalize) {
774 var norm_sq = 0.0;
775 for (var i = 0u; i < 8u; i = i + 1u) {
776 norm_sq += final_result.clifford[i] * final_result.clifford[i];
777 }
778 let norm = sqrt(norm_sq);
779 if (norm > 1e-10) {
780 let inv_norm = 1.0 / norm;
781 for (var i = 0u; i < 8u; i = i + 1u) {
782 final_result.clifford[i] *= inv_norm;
783 }
784 }
785 }
786
787 result[workgroup_id.x] = final_result;
788 }
789}
790"#;
791
792pub const HOLOGRAPHIC_RESONATOR_STEP: &str = r#"
794struct TDC {
795 tropical: f32,
796 dual_real: f32,
797 dual_dual: f32,
798 clifford: array<f32, 8>,
799 _padding: array<f32, 5>,
800}
801
802struct ResonatorOutput {
803 cleaned: TDC,
804 best_index: u32,
805 best_similarity: f32,
806 _padding: array<f32, 2>,
807}
808
809@group(0) @binding(0) var<storage, read> input: TDC;
810@group(0) @binding(1) var<storage, read> codebook: array<TDC>;
811@group(0) @binding(2) var<storage, read_write> output: ResonatorOutput;
812@group(0) @binding(3) var<uniform> params: array<u32, 4>; // [codebook_size, max_iterations, 0, 0]
813
814fn reverse_sign(grade: u32) -> f32 {
815 let signs = array<f32, 8>(1.0, 1.0, 1.0, 1.0, -1.0, -1.0, -1.0, -1.0);
816 return signs[grade];
817}
818
819fn scalar_product_with_reverse(a: TDC, b: TDC) -> f32 {
820 var result = 0.0;
821 for (var i = 0u; i < 8u; i = i + 1u) {
822 result += a.clifford[i] * b.clifford[i] * reverse_sign(i);
823 }
824 return result;
825}
826
827fn norm(v: TDC) -> f32 {
828 var sum = 0.0;
829 for (var i = 0u; i < 8u; i = i + 1u) {
830 sum += v.clifford[i] * v.clifford[i];
831 }
832 return sqrt(sum);
833}
834
835fn similarity(a: TDC, b: TDC) -> f32 {
836 let norm_a = norm(a);
837 let norm_b = norm(b);
838 if (norm_a < 1e-10 || norm_b < 1e-10) {
839 return 0.0;
840 }
841 return scalar_product_with_reverse(a, b) / (norm_a * norm_b);
842}
843
844// Workgroup shared memory for parallel max finding
845var<workgroup> shared_best_sim: array<f32, 256>;
846var<workgroup> shared_best_idx: array<u32, 256>;
847
848@compute @workgroup_size(256)
849fn main(
850 @builtin(global_invocation_id) global_id: vec3<u32>,
851 @builtin(local_invocation_id) local_id: vec3<u32>
852) {
853 let idx = global_id.x;
854 let local_idx = local_id.x;
855 let codebook_size = params[0];
856
857 // Initialize
858 shared_best_sim[local_idx] = -2.0; // Below minimum similarity
859 shared_best_idx[local_idx] = 0u;
860
861 // Each thread computes similarity for one codebook entry
862 if (idx < codebook_size) {
863 let sim = similarity(input, codebook[idx]);
864 shared_best_sim[local_idx] = sim;
865 shared_best_idx[local_idx] = idx;
866 }
867
868 workgroupBarrier();
869
870 // Parallel reduction to find max
871 for (var stride = 128u; stride > 0u; stride = stride / 2u) {
872 if (local_idx < stride && local_idx + stride < 256u) {
873 if (shared_best_sim[local_idx + stride] > shared_best_sim[local_idx]) {
874 shared_best_sim[local_idx] = shared_best_sim[local_idx + stride];
875 shared_best_idx[local_idx] = shared_best_idx[local_idx + stride];
876 }
877 }
878 workgroupBarrier();
879 }
880
881 // Thread 0 writes result
882 if (local_idx == 0u) {
883 let best_idx = shared_best_idx[0];
884 output.cleaned = codebook[best_idx];
885 output.best_index = best_idx;
886 output.best_similarity = shared_best_sim[0];
887 }
888}
889"#;
890
891const FISHER_INFORMATION: &str = r#"
897@group(0) @binding(0) var<storage, read> probability_params: array<f32>;
898@group(0) @binding(1) var<storage, read> data_points: array<f32>;
899@group(0) @binding(2) var<storage, read_write> fisher_matrix: array<f32>;
900@group(0) @binding(3) var<storage, read> dimensions: array<u32>; // [n_params, n_data]
901
902@compute @workgroup_size(16, 16)
903fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
904 let param_i = global_id.x;
905 let param_j = global_id.y;
906
907 let n_params = dimensions[0];
908 let n_data = dimensions[1];
909
910 if (param_i >= n_params || param_j >= n_params) {
911 return;
912 }
913
914 // Fisher Information Matrix: I[i,j] = E[∂²log p(x|θ)/∂θᵢ∂θⱼ]
915 var fisher_element = 0.0;
916
917 for (var data_idx = 0u; data_idx < n_data; data_idx = data_idx + 1u) {
918 let x = data_points[data_idx];
919
920 // Gaussian log-likelihood example: log p(x|μ,σ) = -½log(2πσ²) - (x-μ)²/(2σ²)
921 let mu = probability_params[0];
922 let sigma = probability_params[1];
923 let sigma_sq = sigma * sigma;
924
925 var d2_log_p = 0.0;
926
927 if (param_i == 0u && param_j == 0u) { // ∂²/∂μ²
928 d2_log_p = -1.0 / sigma_sq;
929 } else if (param_i == 1u && param_j == 1u) { // ∂²/∂σ²
930 let diff = x - mu;
931 d2_log_p = -1.0 / sigma_sq + 3.0 * diff * diff / (sigma_sq * sigma_sq);
932 } else if ((param_i == 0u && param_j == 1u) || (param_i == 1u && param_j == 0u)) { // ∂²/∂μ∂σ
933 let diff = x - mu;
934 d2_log_p = 2.0 * diff / (sigma_sq * sigma);
935 }
936
937 fisher_element += -d2_log_p; // Fisher = -E[Hessian of log-likelihood]
938 }
939
940 fisher_matrix[param_i * n_params + param_j] = fisher_element / f32(n_data);
941}
942"#;
943
944const KL_DIVERGENCE_BATCH: &str = r#"
946@group(0) @binding(0) var<storage, read> distribution_p: array<f32>;
947@group(0) @binding(1) var<storage, read> distribution_q: array<f32>;
948@group(0) @binding(2) var<storage, read_write> kl_divergences: array<f32>;
949@group(0) @binding(3) var<storage, read> batch_info: array<u32>; // [batch_size, dist_size]
950
951@compute @workgroup_size(256)
952fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
953 let batch_idx = global_id.x;
954 let batch_size = batch_info[0];
955 let dist_size = batch_info[1];
956
957 if (batch_idx >= batch_size) {
958 return;
959 }
960
961 // KL divergence: D_KL(P||Q) = Σ P(x) log(P(x)/Q(x))
962 var kl_div = 0.0;
963
964 for (var i = 0u; i < dist_size; i = i + 1u) {
965 let p_i = distribution_p[batch_idx * dist_size + i];
966 let q_i = distribution_q[batch_idx * dist_size + i];
967
968 if (p_i > 1e-10 && q_i > 1e-10) { // Avoid log(0)
969 kl_div += p_i * log(p_i / q_i);
970 }
971 }
972
973 kl_divergences[batch_idx] = kl_div;
974}
975"#;
976
977pub const CA_EVOLUTION: &str = r#"
983@group(0) @binding(0) var<storage, read> current_state: array<u32>;
984@group(0) @binding(1) var<storage, read_write> next_state: array<u32>;
985@group(0) @binding(2) var<storage, read> rules: array<u32>;
986@group(0) @binding(3) var<storage, read> dimensions: array<u32>; // [width, height]
987
988@compute @workgroup_size(16, 16)
989fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
990 let x = global_id.x;
991 let y = global_id.y;
992
993 let width = dimensions[0];
994 let height = dimensions[1];
995
996 if (x >= width || y >= height) {
997 return;
998 }
999
1000 let idx = y * width + x;
1001 let current_cell = current_state[idx];
1002
1003 // Count alive neighbors (Moore neighborhood)
1004 var alive_neighbors = 0u;
1005
1006 for (var dy = 0u; dy < 3u; dy = dy + 1u) {
1007 for (var dx = 0u; dx < 3u; dx = dx + 1u) {
1008 if (dx == 1u && dy == 1u) { continue; } // Skip center cell
1009
1010 let nx = (x + dx + width - 1u) % width; // Wrap around
1011 let ny = (y + dy + height - 1u) % height;
1012 let neighbor_idx = ny * width + nx;
1013
1014 if (current_state[neighbor_idx] == 1u) {
1015 alive_neighbors = alive_neighbors + 1u;
1016 }
1017 }
1018 }
1019
1020 // Conway's Game of Life rules (can be customized via rules buffer)
1021 var new_state = 0u;
1022
1023 if (current_cell == 1u) { // Currently alive
1024 if (alive_neighbors == 2u || alive_neighbors == 3u) {
1025 new_state = 1u; // Survive
1026 }
1027 } else { // Currently dead
1028 if (alive_neighbors == 3u) {
1029 new_state = 1u; // Birth
1030 }
1031 }
1032
1033 next_state[idx] = new_state;
1034}
1035"#;
1036
1037pub const RULE_APPLICATION: &str = r#"
1039struct GpuCellData {
1040 scalar: f32,
1041 e1: f32,
1042 e2: f32,
1043 e3: f32,
1044 e12: f32,
1045 e13: f32,
1046 e23: f32,
1047 e123: f32,
1048 generation: f32,
1049 neighborhood_size: f32,
1050 rule_type: f32,
1051 boundary_condition: f32,
1052 padding: array<f32, 4>,
1053}
1054
1055struct GpuRuleConfig {
1056 rule_type: f32,
1057 threshold: f32,
1058 damping_factor: f32,
1059 energy_conservation: f32,
1060 time_step: f32,
1061 spatial_scale: f32,
1062 geometric_weight: f32,
1063 nonlinear_factor: f32,
1064 boundary_type: f32,
1065 neighborhood_radius: f32,
1066 evolution_speed: f32,
1067 stability_factor: f32,
1068 padding: array<f32, 4>,
1069}
1070
1071@group(0) @binding(0) var<storage, read> cells: array<GpuCellData>;
1072@group(0) @binding(1) var<storage, read> rules: array<GpuRuleConfig>;
1073@group(0) @binding(2) var<storage, read_write> output: array<GpuCellData>;
1074
1075@compute @workgroup_size(256)
1076fn rule_application_main(@builtin(global_invocation_id) global_id: vec3<u32>) {
1077 let idx = global_id.x;
1078
1079 if (idx >= arrayLength(&cells)) {
1080 return;
1081 }
1082
1083 let cell = cells[idx];
1084 let rule = rules[0]; // Use first rule for now
1085
1086 var new_cell = cell;
1087
1088 // Apply damping factor
1089 new_cell.scalar = cell.scalar * (1.0 - rule.damping_factor);
1090 new_cell.e1 = cell.e1 * (1.0 - rule.damping_factor);
1091 new_cell.e2 = cell.e2 * (1.0 - rule.damping_factor);
1092 new_cell.e3 = cell.e3 * (1.0 - rule.damping_factor);
1093 new_cell.e12 = cell.e12 * (1.0 - rule.damping_factor);
1094 new_cell.e13 = cell.e13 * (1.0 - rule.damping_factor);
1095 new_cell.e23 = cell.e23 * (1.0 - rule.damping_factor);
1096 new_cell.e123 = cell.e123 * (1.0 - rule.damping_factor);
1097
1098 // Apply threshold
1099 if (abs(new_cell.scalar) < rule.threshold) {
1100 new_cell.scalar = 0.0;
1101 }
1102
1103 output[idx] = new_cell;
1104}
1105"#;
1106
1107pub const ENERGY_CALCULATION: &str = r#"
1109struct GpuCellData {
1110 scalar: f32,
1111 e1: f32,
1112 e2: f32,
1113 e3: f32,
1114 e12: f32,
1115 e13: f32,
1116 e23: f32,
1117 e123: f32,
1118 generation: f32,
1119 neighborhood_size: f32,
1120 rule_type: f32,
1121 boundary_condition: f32,
1122 padding: array<f32, 4>,
1123}
1124
1125@group(0) @binding(0) var<storage, read> cells: array<GpuCellData>;
1126@group(0) @binding(1) var<storage, read_write> total_energy: array<f32>;
1127
1128@compute @workgroup_size(1)
1129fn energy_calculation_main(@builtin(global_invocation_id) global_id: vec3<u32>) {
1130 var energy = 0.0;
1131
1132 // Sum the squared magnitudes of all multivector components
1133 for (var i = 0u; i < arrayLength(&cells); i = i + 1u) {
1134 let cell = cells[i];
1135 energy += cell.scalar * cell.scalar;
1136 energy += cell.e1 * cell.e1;
1137 energy += cell.e2 * cell.e2;
1138 energy += cell.e3 * cell.e3;
1139 energy += cell.e12 * cell.e12;
1140 energy += cell.e13 * cell.e13;
1141 energy += cell.e23 * cell.e23;
1142 energy += cell.e123 * cell.e123;
1143 }
1144
1145 total_energy[0] = energy;
1146}
1147"#;
1148
1149pub const NEIGHBOR_EXTRACTION: &str = r#"
1151struct GpuCellData {
1152 scalar: f32,
1153 e1: f32,
1154 e2: f32,
1155 e3: f32,
1156 e12: f32,
1157 e13: f32,
1158 e23: f32,
1159 e123: f32,
1160 generation: f32,
1161 neighborhood_size: f32,
1162 rule_type: f32,
1163 boundary_condition: f32,
1164 padding: array<f32, 4>,
1165}
1166
1167@group(0) @binding(0) var<storage, read> cells: array<GpuCellData>;
1168@group(0) @binding(1) var<uniform> params: array<f32, 4>; // [width, height, total_cells, padding]
1169@group(0) @binding(2) var<storage, read_write> neighborhoods: array<GpuCellData>;
1170
1171@compute @workgroup_size(256)
1172fn neighbor_extraction_main(@builtin(global_invocation_id) global_id: vec3<u32>) {
1173 let idx = global_id.x;
1174 let width = u32(params[0]);
1175 let height = u32(params[1]);
1176 let total_cells = u32(params[2]);
1177
1178 if (idx >= total_cells) {
1179 return;
1180 }
1181
1182 // Calculate 2D position from linear index
1183 let x = idx % width;
1184 let y = idx / width;
1185
1186 // Moore neighborhood: 8 neighbors
1187 let offsets = array<vec2<i32>, 8>(
1188 vec2<i32>(-1, -1), vec2<i32>(0, -1), vec2<i32>(1, -1),
1189 vec2<i32>(-1, 0), vec2<i32>(1, 0),
1190 vec2<i32>(-1, 1), vec2<i32>(0, 1), vec2<i32>(1, 1)
1191 );
1192
1193 // Extract neighbors with wrapping boundaries
1194 for (var i = 0u; i < 8u; i = i + 1u) {
1195 let offset = offsets[i];
1196 let nx = (i32(x) + offset.x + i32(width)) % i32(width);
1197 let ny = (i32(y) + offset.y + i32(height)) % i32(height);
1198 let neighbor_idx = u32(ny) * width + u32(nx);
1199
1200 // Store neighbor in output array
1201 neighborhoods[idx * 8u + i] = cells[neighbor_idx];
1202 }
1203}
1204"#;
1205
1206const CA_SELF_ASSEMBLY: &str = r#"
1208@group(0) @binding(0) var<storage, read> particles: array<f32>; // [x, y, type, energy]
1209@group(0) @binding(1) var<storage, read_write> new_particles: array<f32>;
1210@group(0) @binding(2) var<storage, read> assembly_rules: array<f32>;
1211@group(0) @binding(3) var<storage, read> simulation_params: array<u32>; // [n_particles, grid_size]
1212
1213@compute @workgroup_size(64)
1214fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
1215 let particle_idx = global_id.x;
1216 let n_particles = simulation_params[0];
1217 let grid_size = simulation_params[1];
1218
1219 if (particle_idx >= n_particles) {
1220 return;
1221 }
1222
1223 let base_idx = particle_idx * 4u;
1224 let x = particles[base_idx];
1225 let y = particles[base_idx + 1u];
1226 let particle_type = particles[base_idx + 2u];
1227 let energy = particles[base_idx + 3u];
1228
1229 // Self-assembly based on local interactions
1230 var new_x = x;
1231 var new_y = y;
1232 var new_energy = energy;
1233
1234 // Calculate forces from nearby particles
1235 var force_x = 0.0;
1236 var force_y = 0.0;
1237
1238 for (var other_idx = 0u; other_idx < n_particles; other_idx = other_idx + 1u) {
1239 if (other_idx == particle_idx) { continue; }
1240
1241 let other_base = other_idx * 4u;
1242 let other_x = particles[other_base];
1243 let other_y = particles[other_base + 1u];
1244 let other_type = particles[other_base + 2u];
1245
1246 let dx = other_x - x;
1247 let dy = other_y - y;
1248 let distance = sqrt(dx * dx + dy * dy);
1249
1250 if (distance < 5.0 && distance > 0.1) { // Interaction range
1251 let interaction_strength = assembly_rules[u32(particle_type) * 4u + u32(other_type)];
1252
1253 // Attractive/repulsive force based on particle types
1254 let force_magnitude = interaction_strength / (distance * distance);
1255 force_x += force_magnitude * dx / distance;
1256 force_y += force_magnitude * dy / distance;
1257 }
1258 }
1259
1260 // Update position based on forces
1261 new_x += force_x * 0.1; // time step
1262 new_y += force_y * 0.1;
1263
1264 // Keep within bounds
1265 new_x = clamp(new_x, 0.0, f32(grid_size));
1266 new_y = clamp(new_y, 0.0, f32(grid_size));
1267
1268 // Energy dissipation
1269 new_energy = energy * 0.99;
1270
1271 new_particles[base_idx] = new_x;
1272 new_particles[base_idx + 1u] = new_y;
1273 new_particles[base_idx + 2u] = particle_type;
1274 new_particles[base_idx + 3u] = new_energy;
1275}
1276"#;
1277
1278pub const INTERSECTION_THEORY: &str = r#"
1284struct RationalNumber {
1285 numerator: i32,
1286 denominator: i32,
1287}
1288
1289@group(0) @binding(0) var<storage, read> chow_class_a: array<RationalNumber>;
1290@group(0) @binding(1) var<storage, read> chow_class_b: array<RationalNumber>;
1291@group(0) @binding(2) var<storage, read_write> intersection_result: array<RationalNumber>;
1292@group(0) @binding(3) var<storage, read> geometry_params: array<u32>; // [dimension, degree_a, degree_b]
1293
1294fn gcd(a: u32, b: u32) -> u32 {
1295 if (b == 0u) { return a; }
1296 return gcd(b, a % b);
1297}
1298
1299fn add_rationals(a: RationalNumber, b: RationalNumber) -> RationalNumber {
1300 let num = a.numerator * b.denominator + b.numerator * a.denominator;
1301 let den = a.denominator * b.denominator;
1302 let g = gcd(u32(abs(num)), u32(abs(den)));
1303
1304 return RationalNumber(num / i32(g), den / i32(g));
1305}
1306
1307fn multiply_rationals(a: RationalNumber, b: RationalNumber) -> RationalNumber {
1308 let num = a.numerator * b.numerator;
1309 let den = a.denominator * b.denominator;
1310 let g = gcd(u32(abs(num)), u32(abs(den)));
1311
1312 return RationalNumber(num / i32(g), den / i32(g));
1313}
1314
1315@compute @workgroup_size(256)
1316fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
1317 let idx = global_id.x;
1318
1319 if (idx >= arrayLength(&chow_class_a)) {
1320 return;
1321 }
1322
1323 let dimension = geometry_params[0];
1324 let degree_a = geometry_params[1];
1325 let degree_b = geometry_params[2];
1326
1327 // Intersection product in Chow ring: A · B
1328 // For simplicity, implement as pointwise multiplication for this example
1329 let a = chow_class_a[idx];
1330 let b = chow_class_b[idx];
1331
1332 // Check degree compatibility (degree_a + degree_b ≤ dimension)
1333 if (degree_a + degree_b <= dimension) {
1334 intersection_result[idx] = multiply_rationals(a, b);
1335 } else {
1336 intersection_result[idx] = RationalNumber(0, 1); // Zero class
1337 }
1338}
1339"#;
1340
1341const SCHUBERT_CALCULUS: &str = r#"
1343@group(0) @binding(0) var<storage, read> partition_a: array<u32>;
1344@group(0) @binding(1) var<storage, read> partition_b: array<u32>;
1345@group(0) @binding(2) var<storage, read_write> littlewood_coeff: array<u32>;
1346@group(0) @binding(3) var<storage, read> grassmann_params: array<u32>; // [n, k]
1347
1348@compute @workgroup_size(128)
1349fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
1350 let coeff_idx = global_id.x;
1351
1352 let n = grassmann_params[0]; // Dimension of ambient space
1353 let k = grassmann_params[1]; // Dimension of subspaces
1354
1355 if (coeff_idx >= arrayLength(&littlewood_coeff)) {
1356 return;
1357 }
1358
1359 // Schubert calculus: compute Littlewood-Richardson coefficients
1360 // This is a simplified version - full LR coefficients require more complex algorithms
1361
1362 let max_parts = min(arrayLength(&partition_a), arrayLength(&partition_b));
1363 var coefficient = 0u;
1364
1365 // Simplified intersection number computation
1366 for (var i = 0u; i < max_parts; i = i + 1u) {
1367 let part_a = partition_a[i];
1368 let part_b = partition_b[i];
1369
1370 // Check compatibility with Grassmannian Gr(k, n)
1371 if (part_a <= n - k && part_b <= n - k) {
1372 coefficient += part_a * part_b;
1373 }
1374 }
1375
1376 littlewood_coeff[coeff_idx] = coefficient;
1377}
1378"#;
1379
1380#[cfg(test)]
1381mod tests {
1382 use super::*;
1383
1384 #[test]
1385 fn test_shader_library_creation() {
1386 let library = ShaderLibrary::new();
1387 let shaders = library.list_shaders();
1388
1389 assert!(shaders.contains(&"tropical_matrix_multiply".to_string()));
1391 assert!(shaders.contains(&"dual_forward_ad".to_string()));
1392 assert!(shaders.contains(&"tropical_dual_clifford".to_string()));
1393 assert!(shaders.contains(&"fisher_information".to_string()));
1394 assert!(shaders.contains(&"ca_evolution".to_string()));
1395 assert!(shaders.contains(&"intersection_theory".to_string()));
1396
1397 assert!(shaders.contains(&"holographic_batch_bind".to_string()));
1399 assert!(shaders.contains(&"holographic_batch_similarity".to_string()));
1400 assert!(shaders.contains(&"holographic_bundle_all".to_string()));
1401 assert!(shaders.contains(&"holographic_resonator_step".to_string()));
1402 }
1403
1404 #[test]
1405 fn test_shader_retrieval() {
1406 let library = ShaderLibrary::new();
1407
1408 let shader = library.get_shader("tropical_matrix_multiply");
1409 assert!(shader.is_some());
1410 assert!(shader.unwrap().contains("@compute"));
1411 assert!(shader.unwrap().contains("tropical"));
1412 }
1413
1414 #[test]
1415 fn test_shader_constants() {
1416 assert_eq!(TROPICAL_SHADERS.len(), 3);
1417 assert_eq!(DUAL_SHADERS.len(), 3);
1418 assert_eq!(FUSION_SHADERS.len(), 2);
1419 assert_eq!(HOLOGRAPHIC_SHADERS.len(), 4);
1420 }
1421
1422 #[test]
1423 fn test_holographic_shaders() {
1424 assert!(HOLOGRAPHIC_BATCH_BIND.contains("@compute"));
1426 assert!(HOLOGRAPHIC_BATCH_BIND.contains("cayley"));
1427
1428 assert!(HOLOGRAPHIC_BATCH_SIMILARITY.contains("@compute"));
1429 assert!(HOLOGRAPHIC_BATCH_SIMILARITY.contains("similarity"));
1430
1431 assert!(HOLOGRAPHIC_BUNDLE_ALL.contains("@compute"));
1432 assert!(HOLOGRAPHIC_BUNDLE_ALL.contains("workgroupBarrier"));
1433
1434 assert!(HOLOGRAPHIC_RESONATOR_STEP.contains("@compute"));
1435 assert!(HOLOGRAPHIC_RESONATOR_STEP.contains("codebook"));
1436 }
1437}