amari_gpu/
shaders.rs

1//! WebGPU compute shader library for mathematical operations
2//!
3//! This module contains optimized WGSL compute shaders for various mathematical
4//! domains including tropical algebra, automatic differentiation, and fusion systems.
5
6use std::collections::HashMap;
7
8/// Shader library managing all mathematical compute shaders
9pub struct ShaderLibrary {
10    shaders: HashMap<String, &'static str>,
11}
12
13impl ShaderLibrary {
14    /// Create new shader library with all mathematical shaders
15    pub fn new() -> Self {
16        let mut shaders = HashMap::new();
17
18        // Tropical algebra shaders
19        shaders.insert(
20            "tropical_matrix_multiply".to_string(),
21            TROPICAL_MATRIX_MULTIPLY,
22        );
23        shaders.insert("tropical_vector_add".to_string(), TROPICAL_VECTOR_ADD);
24        shaders.insert(
25            "tropical_neural_network".to_string(),
26            TROPICAL_NEURAL_NETWORK,
27        );
28
29        // Dual number shaders
30        shaders.insert("dual_forward_ad".to_string(), DUAL_FORWARD_AD);
31        shaders.insert("dual_batch_gradient".to_string(), DUAL_BATCH_GRADIENT);
32        shaders.insert("dual_chain_rule".to_string(), DUAL_CHAIN_RULE);
33
34        // Fusion system shaders
35        shaders.insert("tropical_dual_clifford".to_string(), TROPICAL_DUAL_CLIFFORD);
36        shaders.insert("fusion_attention".to_string(), FUSION_ATTENTION);
37
38        // Information geometry shaders
39        shaders.insert("fisher_information".to_string(), FISHER_INFORMATION);
40        shaders.insert("kl_divergence_batch".to_string(), KL_DIVERGENCE_BATCH);
41
42        // Cellular automata shaders
43        shaders.insert("ca_evolution".to_string(), CA_EVOLUTION);
44        shaders.insert("ca_self_assembly".to_string(), CA_SELF_ASSEMBLY);
45        shaders.insert("rule_application".to_string(), RULE_APPLICATION);
46        shaders.insert("energy_calculation".to_string(), ENERGY_CALCULATION);
47        shaders.insert("neighbor_extraction".to_string(), NEIGHBOR_EXTRACTION);
48
49        // Enumerative geometry shaders
50        shaders.insert("intersection_theory".to_string(), INTERSECTION_THEORY);
51        shaders.insert("schubert_calculus".to_string(), SCHUBERT_CALCULUS);
52
53        Self { shaders }
54    }
55
56    /// Get shader source by name
57    pub fn get_shader(&self, name: &str) -> Option<&'static str> {
58        self.shaders.get(name).copied()
59    }
60
61    /// List all available shaders
62    pub fn list_shaders(&self) -> Vec<String> {
63        self.shaders.keys().cloned().collect()
64    }
65}
66
67impl Default for ShaderLibrary {
68    fn default() -> Self {
69        Self::new()
70    }
71}
72
73/// Tropical algebra shader collection
74pub const TROPICAL_SHADERS: &[(&str, &str)] = &[
75    ("tropical_matrix_multiply", TROPICAL_MATRIX_MULTIPLY),
76    ("tropical_vector_add", TROPICAL_VECTOR_ADD),
77    ("tropical_neural_network", TROPICAL_NEURAL_NETWORK),
78];
79
80/// Dual number shader collection
81pub const DUAL_SHADERS: &[(&str, &str)] = &[
82    ("dual_forward_ad", DUAL_FORWARD_AD),
83    ("dual_batch_gradient", DUAL_BATCH_GRADIENT),
84    ("dual_chain_rule", DUAL_CHAIN_RULE),
85];
86
87/// Fusion system shader collection
88pub const FUSION_SHADERS: &[(&str, &str)] = &[
89    ("tropical_dual_clifford", TROPICAL_DUAL_CLIFFORD),
90    ("fusion_attention", FUSION_ATTENTION),
91];
92
93// =====================================================================
94// TROPICAL ALGEBRA SHADERS
95// =====================================================================
96
97/// Tropical (max-plus) matrix multiplication: C = A ⊗ B where ⊗ is tropical product
98const TROPICAL_MATRIX_MULTIPLY: &str = r#"
99@group(0) @binding(0) var<storage, read> matrix_a: array<f32>;
100@group(0) @binding(1) var<storage, read> matrix_b: array<f32>;
101@group(0) @binding(2) var<storage, read_write> result: array<f32>;
102@group(0) @binding(3) var<storage, read> dimensions: array<u32>; // [M, N, K]
103
104@compute @workgroup_size(16, 16)
105fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
106    let M = dimensions[0];
107    let N = dimensions[1];
108    let K = dimensions[2];
109
110    let row = global_id.x;
111    let col = global_id.y;
112
113    if (row >= M || col >= N) {
114        return;
115    }
116
117    // Tropical matrix multiplication: (A ⊗ B)[i,j] = max_k(A[i,k] + B[k,j])
118    var max_val = -3.4028235e+38; // -infinity in tropical algebra
119
120    for (var k = 0u; k < K; k = k + 1u) {
121        let a_val = matrix_a[row * K + k];
122        let b_val = matrix_b[k * N + col];
123
124        // Tropical multiplication: a ⊗ b = a + b
125        let tropical_product = a_val + b_val;
126
127        // Tropical addition: max operation
128        if (tropical_product > max_val) {
129            max_val = tropical_product;
130        }
131    }
132
133    result[row * N + col] = max_val;
134}
135"#;
136
137/// Tropical vector addition: c = a ⊕ b where ⊕ is max operation
138const TROPICAL_VECTOR_ADD: &str = r#"
139@group(0) @binding(0) var<storage, read> vector_a: array<f32>;
140@group(0) @binding(1) var<storage, read> vector_b: array<f32>;
141@group(0) @binding(2) var<storage, read_write> result: array<f32>;
142
143@compute @workgroup_size(256)
144fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
145    let idx = global_id.x;
146
147    if (idx >= arrayLength(&vector_a)) {
148        return;
149    }
150
151    // Tropical addition: a ⊕ b = max(a, b)
152    result[idx] = max(vector_a[idx], vector_b[idx]);
153}
154"#;
155
156/// Tropical neural network layer computation
157const TROPICAL_NEURAL_NETWORK: &str = r#"
158@group(0) @binding(0) var<storage, read> input: array<f32>;
159@group(0) @binding(1) var<storage, read> weights: array<f32>;
160@group(0) @binding(2) var<storage, read> bias: array<f32>;
161@group(0) @binding(3) var<storage, read_write> output: array<f32>;
162@group(0) @binding(4) var<storage, read> dimensions: array<u32>; // [batch_size, input_size, output_size]
163
164@compute @workgroup_size(16, 16)
165fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
166    let batch_idx = global_id.x;
167    let output_idx = global_id.y;
168
169    let batch_size = dimensions[0];
170    let input_size = dimensions[1];
171    let output_size = dimensions[2];
172
173    if (batch_idx >= batch_size || output_idx >= output_size) {
174        return;
175    }
176
177    // Tropical neural network: max-plus linear transformation
178    var max_val = -3.4028235e+38; // -infinity
179
180    for (var i = 0u; i < input_size; i = i + 1u) {
181        let input_val = input[batch_idx * input_size + i];
182        let weight_val = weights[i * output_size + output_idx];
183
184        // Tropical multiplication: input ⊗ weight = input + weight
185        let product = input_val + weight_val;
186
187        // Tropical addition: max operation
188        if (product > max_val) {
189            max_val = product;
190        }
191    }
192
193    // Add bias (tropical addition = max)
194    let bias_val = bias[output_idx];
195    let final_result = max(max_val, bias_val);
196
197    output[batch_idx * output_size + output_idx] = final_result;
198}
199"#;
200
201// =====================================================================
202// DUAL NUMBER SHADERS (AUTOMATIC DIFFERENTIATION)
203// =====================================================================
204
205/// Forward-mode automatic differentiation for dual numbers
206const DUAL_FORWARD_AD: &str = r#"
207struct DualNumber {
208    real: f32,
209    dual: f32, // derivative part
210}
211
212@group(0) @binding(0) var<storage, read> input_dual: array<DualNumber>;
213@group(0) @binding(1) var<storage, read> operation_params: array<f32>;
214@group(0) @binding(2) var<storage, read_write> output_dual: array<DualNumber>;
215
216@compute @workgroup_size(256)
217fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
218    let idx = global_id.x;
219
220    if (idx >= arrayLength(&input_dual)) {
221        return;
222    }
223
224    let x = input_dual[idx];
225    let op_type = u32(operation_params[0]); // Operation type
226
227    var result: DualNumber;
228
229    // Forward-mode AD for different operations
230    switch (op_type) {
231        case 0u: { // sin(x): (sin(x), cos(x) * dx)
232            result.real = sin(x.real);
233            result.dual = cos(x.real) * x.dual;
234        }
235        case 1u: { // exp(x): (exp(x), exp(x) * dx)
236            let exp_val = exp(x.real);
237            result.real = exp_val;
238            result.dual = exp_val * x.dual;
239        }
240        case 2u: { // x^2: (x^2, 2x * dx)
241            result.real = x.real * x.real;
242            result.dual = 2.0 * x.real * x.dual;
243        }
244        case 3u: { // log(x): (log(x), (1/x) * dx)
245            result.real = log(x.real);
246            result.dual = x.dual / x.real;
247        }
248        default: { // identity
249            result = x;
250        }
251    }
252
253    output_dual[idx] = result;
254}
255"#;
256
257/// Batch gradient computation for multiple functions
258const DUAL_BATCH_GRADIENT: &str = r#"
259struct DualNumber {
260    real: f32,
261    dual: f32,
262}
263
264@group(0) @binding(0) var<storage, read> input_batch: array<DualNumber>;
265@group(0) @binding(1) var<storage, read> function_params: array<f32>;
266@group(0) @binding(2) var<storage, read_write> gradients: array<f32>;
267@group(0) @binding(3) var<storage, read> batch_info: array<u32>; // [batch_size, function_dim]
268
269@compute @workgroup_size(16, 16)
270fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
271    let batch_idx = global_id.x;
272    let var_idx = global_id.y;
273
274    let batch_size = batch_info[0];
275    let function_dim = batch_info[1];
276
277    if (batch_idx >= batch_size || var_idx >= function_dim) {
278        return;
279    }
280
281    let input_idx = batch_idx * function_dim + var_idx;
282    let x = input_batch[input_idx];
283
284    // Compute gradient of composite function f(g(x)) where g is parameterized
285    let param_idx = var_idx % 4u; // Assume up to 4 parameters per function
286    let param = function_params[param_idx];
287
288    // Example: f(x) = param * x^2 + sin(x), gradient = 2 * param * x + cos(x)
289    let gradient = 2.0 * param * x.real + cos(x.real);
290
291    gradients[input_idx] = gradient * x.dual;
292}
293"#;
294
295/// Chain rule implementation for complex function compositions
296const DUAL_CHAIN_RULE: &str = r#"
297struct DualNumber {
298    real: f32,
299    dual: f32,
300}
301
302@group(0) @binding(0) var<storage, read> inner_function: array<DualNumber>;
303@group(0) @binding(1) var<storage, read> outer_params: array<f32>;
304@group(0) @binding(2) var<storage, read_write> composed_result: array<DualNumber>;
305
306@compute @workgroup_size(256)
307fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
308    let idx = global_id.x;
309
310    if (idx >= arrayLength(&inner_function)) {
311        return;
312    }
313
314    let u = inner_function[idx]; // u = g(x), du/dx
315    let outer_type = u32(outer_params[0]);
316
317    var result: DualNumber;
318
319    // Chain rule: d/dx[f(g(x))] = f'(g(x)) * g'(x) = f'(u) * du/dx
320    switch (outer_type) {
321        case 0u: { // f(u) = sin(u)
322            result.real = sin(u.real);
323            result.dual = cos(u.real) * u.dual; // cos(u) * du/dx
324        }
325        case 1u: { // f(u) = u^3
326            result.real = u.real * u.real * u.real;
327            result.dual = 3.0 * u.real * u.real * u.dual; // 3u^2 * du/dx
328        }
329        case 2u: { // f(u) = exp(u)
330            let exp_u = exp(u.real);
331            result.real = exp_u;
332            result.dual = exp_u * u.dual; // exp(u) * du/dx
333        }
334        default: { // f(u) = u (identity)
335            result = u;
336        }
337    }
338
339    composed_result[idx] = result;
340}
341"#;
342
343// =====================================================================
344// FUSION SYSTEM SHADERS
345// =====================================================================
346
347/// TropicalDualClifford operations for LLM evaluation
348const TROPICAL_DUAL_CLIFFORD: &str = r#"
349struct TropicalNumber {
350    value: f32, // Tropical number value
351}
352
353struct DualNumber {
354    real: f32,
355    dual: f32,
356}
357
358struct Multivector {
359    coeffs: array<f32, 8>, // 3D Clifford algebra: 8 basis elements
360}
361
362struct TropicalDualClifford {
363    tropical: TropicalNumber,
364    dual: DualNumber,
365    clifford: Multivector,
366}
367
368@group(0) @binding(0) var<storage, read> input_batch: array<TropicalDualClifford>;
369@group(0) @binding(1) var<storage, read> operation_params: array<f32>;
370@group(0) @binding(2) var<storage, read_write> output_batch: array<TropicalDualClifford>;
371
372@compute @workgroup_size(64)
373fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
374    let idx = global_id.x;
375
376    if (idx >= arrayLength(&input_batch)) {
377        return;
378    }
379
380    let tdc = input_batch[idx];
381    let op_type = u32(operation_params[0]);
382
383    var result: TropicalDualClifford;
384
385    switch (op_type) {
386        case 0u: { // LLM attention computation
387            // Combine tropical path selection with dual gradients and geometric transformations
388            result.tropical.value = max(tdc.tropical.value, operation_params[1]);
389            result.dual.real = tdc.dual.real * operation_params[2];
390            result.dual.dual = tdc.dual.dual * operation_params[2];
391
392            // Geometric rotation in Clifford algebra
393            let angle = operation_params[3];
394            let cos_half = cos(angle * 0.5);
395            let sin_half = sin(angle * 0.5);
396
397            // Simple rotation around e12 plane
398            result.clifford.coeffs[0] = cos_half * tdc.clifford.coeffs[0]; // scalar
399            result.clifford.coeffs[1] = tdc.clifford.coeffs[1]; // e1
400            result.clifford.coeffs[2] = tdc.clifford.coeffs[2]; // e2
401            result.clifford.coeffs[3] = tdc.clifford.coeffs[3]; // e3
402            result.clifford.coeffs[4] = sin_half * tdc.clifford.coeffs[0]; // e12
403            result.clifford.coeffs[5] = tdc.clifford.coeffs[5]; // e13
404            result.clifford.coeffs[6] = tdc.clifford.coeffs[6]; // e23
405            result.clifford.coeffs[7] = tdc.clifford.coeffs[7]; // e123
406        }
407        default: {
408            result = tdc;
409        }
410    }
411
412    output_batch[idx] = result;
413}
414"#;
415
416/// Fusion attention mechanism using tropical algebra
417const FUSION_ATTENTION: &str = r#"
418@group(0) @binding(0) var<storage, read> queries: array<f32>;
419@group(0) @binding(1) var<storage, read> keys: array<f32>;
420@group(0) @binding(2) var<storage, read> values: array<f32>;
421@group(0) @binding(3) var<storage, read_write> attention_output: array<f32>;
422@group(0) @binding(4) var<storage, read> dimensions: array<u32>; // [seq_len, d_model]
423
424@compute @workgroup_size(16, 16)
425fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
426    let seq_pos = global_id.x;
427    let feature_idx = global_id.y;
428
429    let seq_len = dimensions[0];
430    let d_model = dimensions[1];
431
432    if (seq_pos >= seq_len || feature_idx >= d_model) {
433        return;
434    }
435
436    // Tropical attention: use max-plus algebra instead of softmax
437    var max_score = -3.4028235e+38; // -infinity
438    var best_key_idx = 0u;
439
440    // Find the key with maximum tropical attention score
441    for (var key_idx = 0u; key_idx < seq_len; key_idx = key_idx + 1u) {
442        var score = -3.4028235e+38;
443
444        // Compute tropical dot product: sum becomes max, product becomes sum
445        for (var d = 0u; d < d_model; d = d + 1u) {
446            let q = queries[seq_pos * d_model + d];
447            let k = keys[key_idx * d_model + d];
448
449            // Tropical multiplication: q ⊗ k = q + k
450            let tropical_product = q + k;
451
452            // Tropical sum: max operation
453            if (tropical_product > score) {
454                score = tropical_product;
455            }
456        }
457
458        if (score > max_score) {
459            max_score = score;
460            best_key_idx = key_idx;
461        }
462    }
463
464    // Tropical attention: select value from best key (winner-takes-all)
465    attention_output[seq_pos * d_model + feature_idx] =
466        values[best_key_idx * d_model + feature_idx];
467}
468"#;
469
470// =====================================================================
471// INFORMATION GEOMETRY SHADERS
472// =====================================================================
473
474/// Fisher information matrix computation
475const FISHER_INFORMATION: &str = r#"
476@group(0) @binding(0) var<storage, read> probability_params: array<f32>;
477@group(0) @binding(1) var<storage, read> data_points: array<f32>;
478@group(0) @binding(2) var<storage, read_write> fisher_matrix: array<f32>;
479@group(0) @binding(3) var<storage, read> dimensions: array<u32>; // [n_params, n_data]
480
481@compute @workgroup_size(16, 16)
482fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
483    let param_i = global_id.x;
484    let param_j = global_id.y;
485
486    let n_params = dimensions[0];
487    let n_data = dimensions[1];
488
489    if (param_i >= n_params || param_j >= n_params) {
490        return;
491    }
492
493    // Fisher Information Matrix: I[i,j] = E[∂²log p(x|θ)/∂θᵢ∂θⱼ]
494    var fisher_element = 0.0;
495
496    for (var data_idx = 0u; data_idx < n_data; data_idx = data_idx + 1u) {
497        let x = data_points[data_idx];
498
499        // Gaussian log-likelihood example: log p(x|μ,σ) = -½log(2πσ²) - (x-μ)²/(2σ²)
500        let mu = probability_params[0];
501        let sigma = probability_params[1];
502        let sigma_sq = sigma * sigma;
503
504        var d2_log_p = 0.0;
505
506        if (param_i == 0u && param_j == 0u) { // ∂²/∂μ²
507            d2_log_p = -1.0 / sigma_sq;
508        } else if (param_i == 1u && param_j == 1u) { // ∂²/∂σ²
509            let diff = x - mu;
510            d2_log_p = -1.0 / sigma_sq + 3.0 * diff * diff / (sigma_sq * sigma_sq);
511        } else if ((param_i == 0u && param_j == 1u) || (param_i == 1u && param_j == 0u)) { // ∂²/∂μ∂σ
512            let diff = x - mu;
513            d2_log_p = 2.0 * diff / (sigma_sq * sigma);
514        }
515
516        fisher_element += -d2_log_p; // Fisher = -E[Hessian of log-likelihood]
517    }
518
519    fisher_matrix[param_i * n_params + param_j] = fisher_element / f32(n_data);
520}
521"#;
522
523/// Batch KL divergence computation
524const KL_DIVERGENCE_BATCH: &str = r#"
525@group(0) @binding(0) var<storage, read> distribution_p: array<f32>;
526@group(0) @binding(1) var<storage, read> distribution_q: array<f32>;
527@group(0) @binding(2) var<storage, read_write> kl_divergences: array<f32>;
528@group(0) @binding(3) var<storage, read> batch_info: array<u32>; // [batch_size, dist_size]
529
530@compute @workgroup_size(256)
531fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
532    let batch_idx = global_id.x;
533    let batch_size = batch_info[0];
534    let dist_size = batch_info[1];
535
536    if (batch_idx >= batch_size) {
537        return;
538    }
539
540    // KL divergence: D_KL(P||Q) = Σ P(x) log(P(x)/Q(x))
541    var kl_div = 0.0;
542
543    for (var i = 0u; i < dist_size; i = i + 1u) {
544        let p_i = distribution_p[batch_idx * dist_size + i];
545        let q_i = distribution_q[batch_idx * dist_size + i];
546
547        if (p_i > 1e-10 && q_i > 1e-10) { // Avoid log(0)
548            kl_div += p_i * log(p_i / q_i);
549        }
550    }
551
552    kl_divergences[batch_idx] = kl_div;
553}
554"#;
555
556// =====================================================================
557// CELLULAR AUTOMATA SHADERS
558// =====================================================================
559
560/// Cellular automata evolution step
561pub const CA_EVOLUTION: &str = r#"
562@group(0) @binding(0) var<storage, read> current_state: array<u32>;
563@group(0) @binding(1) var<storage, read_write> next_state: array<u32>;
564@group(0) @binding(2) var<storage, read> rules: array<u32>;
565@group(0) @binding(3) var<storage, read> dimensions: array<u32>; // [width, height]
566
567@compute @workgroup_size(16, 16)
568fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
569    let x = global_id.x;
570    let y = global_id.y;
571
572    let width = dimensions[0];
573    let height = dimensions[1];
574
575    if (x >= width || y >= height) {
576        return;
577    }
578
579    let idx = y * width + x;
580    let current_cell = current_state[idx];
581
582    // Count alive neighbors (Moore neighborhood)
583    var alive_neighbors = 0u;
584
585    for (var dy = 0u; dy < 3u; dy = dy + 1u) {
586        for (var dx = 0u; dx < 3u; dx = dx + 1u) {
587            if (dx == 1u && dy == 1u) { continue; } // Skip center cell
588
589            let nx = (x + dx + width - 1u) % width; // Wrap around
590            let ny = (y + dy + height - 1u) % height;
591            let neighbor_idx = ny * width + nx;
592
593            if (current_state[neighbor_idx] == 1u) {
594                alive_neighbors = alive_neighbors + 1u;
595            }
596        }
597    }
598
599    // Conway's Game of Life rules (can be customized via rules buffer)
600    var new_state = 0u;
601
602    if (current_cell == 1u) { // Currently alive
603        if (alive_neighbors == 2u || alive_neighbors == 3u) {
604            new_state = 1u; // Survive
605        }
606    } else { // Currently dead
607        if (alive_neighbors == 3u) {
608            new_state = 1u; // Birth
609        }
610    }
611
612    next_state[idx] = new_state;
613}
614"#;
615
616/// Rule application for geometric algebra cellular automata
617pub const RULE_APPLICATION: &str = r#"
618struct GpuCellData {
619    scalar: f32,
620    e1: f32,
621    e2: f32,
622    e3: f32,
623    e12: f32,
624    e13: f32,
625    e23: f32,
626    e123: f32,
627    generation: f32,
628    neighborhood_size: f32,
629    rule_type: f32,
630    boundary_condition: f32,
631    padding: array<f32, 4>,
632}
633
634struct GpuRuleConfig {
635    rule_type: f32,
636    threshold: f32,
637    damping_factor: f32,
638    energy_conservation: f32,
639    time_step: f32,
640    spatial_scale: f32,
641    geometric_weight: f32,
642    nonlinear_factor: f32,
643    boundary_type: f32,
644    neighborhood_radius: f32,
645    evolution_speed: f32,
646    stability_factor: f32,
647    padding: array<f32, 4>,
648}
649
650@group(0) @binding(0) var<storage, read> cells: array<GpuCellData>;
651@group(0) @binding(1) var<storage, read> rules: array<GpuRuleConfig>;
652@group(0) @binding(2) var<storage, read_write> output: array<GpuCellData>;
653
654@compute @workgroup_size(256)
655fn rule_application_main(@builtin(global_invocation_id) global_id: vec3<u32>) {
656    let idx = global_id.x;
657
658    if (idx >= arrayLength(&cells)) {
659        return;
660    }
661
662    let cell = cells[idx];
663    let rule = rules[0]; // Use first rule for now
664
665    var new_cell = cell;
666
667    // Apply damping factor
668    new_cell.scalar = cell.scalar * (1.0 - rule.damping_factor);
669    new_cell.e1 = cell.e1 * (1.0 - rule.damping_factor);
670    new_cell.e2 = cell.e2 * (1.0 - rule.damping_factor);
671    new_cell.e3 = cell.e3 * (1.0 - rule.damping_factor);
672    new_cell.e12 = cell.e12 * (1.0 - rule.damping_factor);
673    new_cell.e13 = cell.e13 * (1.0 - rule.damping_factor);
674    new_cell.e23 = cell.e23 * (1.0 - rule.damping_factor);
675    new_cell.e123 = cell.e123 * (1.0 - rule.damping_factor);
676
677    // Apply threshold
678    if (abs(new_cell.scalar) < rule.threshold) {
679        new_cell.scalar = 0.0;
680    }
681
682    output[idx] = new_cell;
683}
684"#;
685
686/// Energy calculation for cellular automata
687pub const ENERGY_CALCULATION: &str = r#"
688struct GpuCellData {
689    scalar: f32,
690    e1: f32,
691    e2: f32,
692    e3: f32,
693    e12: f32,
694    e13: f32,
695    e23: f32,
696    e123: f32,
697    generation: f32,
698    neighborhood_size: f32,
699    rule_type: f32,
700    boundary_condition: f32,
701    padding: array<f32, 4>,
702}
703
704@group(0) @binding(0) var<storage, read> cells: array<GpuCellData>;
705@group(0) @binding(1) var<storage, read_write> total_energy: array<f32>;
706
707@compute @workgroup_size(1)
708fn energy_calculation_main(@builtin(global_invocation_id) global_id: vec3<u32>) {
709    var energy = 0.0;
710
711    // Sum the squared magnitudes of all multivector components
712    for (var i = 0u; i < arrayLength(&cells); i = i + 1u) {
713        let cell = cells[i];
714        energy += cell.scalar * cell.scalar;
715        energy += cell.e1 * cell.e1;
716        energy += cell.e2 * cell.e2;
717        energy += cell.e3 * cell.e3;
718        energy += cell.e12 * cell.e12;
719        energy += cell.e13 * cell.e13;
720        energy += cell.e23 * cell.e23;
721        energy += cell.e123 * cell.e123;
722    }
723
724    total_energy[0] = energy;
725}
726"#;
727
728/// Neighbor extraction for cellular automata
729pub const NEIGHBOR_EXTRACTION: &str = r#"
730struct GpuCellData {
731    scalar: f32,
732    e1: f32,
733    e2: f32,
734    e3: f32,
735    e12: f32,
736    e13: f32,
737    e23: f32,
738    e123: f32,
739    generation: f32,
740    neighborhood_size: f32,
741    rule_type: f32,
742    boundary_condition: f32,
743    padding: array<f32, 4>,
744}
745
746@group(0) @binding(0) var<storage, read> cells: array<GpuCellData>;
747@group(0) @binding(1) var<uniform> params: array<f32, 4>; // [width, height, total_cells, padding]
748@group(0) @binding(2) var<storage, read_write> neighborhoods: array<GpuCellData>;
749
750@compute @workgroup_size(256)
751fn neighbor_extraction_main(@builtin(global_invocation_id) global_id: vec3<u32>) {
752    let idx = global_id.x;
753    let width = u32(params[0]);
754    let height = u32(params[1]);
755    let total_cells = u32(params[2]);
756
757    if (idx >= total_cells) {
758        return;
759    }
760
761    // Calculate 2D position from linear index
762    let x = idx % width;
763    let y = idx / width;
764
765    // Moore neighborhood: 8 neighbors
766    let offsets = array<vec2<i32>, 8>(
767        vec2<i32>(-1, -1), vec2<i32>(0, -1), vec2<i32>(1, -1),
768        vec2<i32>(-1,  0),                   vec2<i32>(1,  0),
769        vec2<i32>(-1,  1), vec2<i32>(0,  1), vec2<i32>(1,  1)
770    );
771
772    // Extract neighbors with wrapping boundaries
773    for (var i = 0u; i < 8u; i = i + 1u) {
774        let offset = offsets[i];
775        let nx = (i32(x) + offset.x + i32(width)) % i32(width);
776        let ny = (i32(y) + offset.y + i32(height)) % i32(height);
777        let neighbor_idx = u32(ny) * width + u32(nx);
778
779        // Store neighbor in output array
780        neighborhoods[idx * 8u + i] = cells[neighbor_idx];
781    }
782}
783"#;
784
785/// Self-assembly pattern formation
786const CA_SELF_ASSEMBLY: &str = r#"
787@group(0) @binding(0) var<storage, read> particles: array<f32>; // [x, y, type, energy]
788@group(0) @binding(1) var<storage, read_write> new_particles: array<f32>;
789@group(0) @binding(2) var<storage, read> assembly_rules: array<f32>;
790@group(0) @binding(3) var<storage, read> simulation_params: array<u32>; // [n_particles, grid_size]
791
792@compute @workgroup_size(64)
793fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
794    let particle_idx = global_id.x;
795    let n_particles = simulation_params[0];
796    let grid_size = simulation_params[1];
797
798    if (particle_idx >= n_particles) {
799        return;
800    }
801
802    let base_idx = particle_idx * 4u;
803    let x = particles[base_idx];
804    let y = particles[base_idx + 1u];
805    let particle_type = particles[base_idx + 2u];
806    let energy = particles[base_idx + 3u];
807
808    // Self-assembly based on local interactions
809    var new_x = x;
810    var new_y = y;
811    var new_energy = energy;
812
813    // Calculate forces from nearby particles
814    var force_x = 0.0;
815    var force_y = 0.0;
816
817    for (var other_idx = 0u; other_idx < n_particles; other_idx = other_idx + 1u) {
818        if (other_idx == particle_idx) { continue; }
819
820        let other_base = other_idx * 4u;
821        let other_x = particles[other_base];
822        let other_y = particles[other_base + 1u];
823        let other_type = particles[other_base + 2u];
824
825        let dx = other_x - x;
826        let dy = other_y - y;
827        let distance = sqrt(dx * dx + dy * dy);
828
829        if (distance < 5.0 && distance > 0.1) { // Interaction range
830            let interaction_strength = assembly_rules[u32(particle_type) * 4u + u32(other_type)];
831
832            // Attractive/repulsive force based on particle types
833            let force_magnitude = interaction_strength / (distance * distance);
834            force_x += force_magnitude * dx / distance;
835            force_y += force_magnitude * dy / distance;
836        }
837    }
838
839    // Update position based on forces
840    new_x += force_x * 0.1; // time step
841    new_y += force_y * 0.1;
842
843    // Keep within bounds
844    new_x = clamp(new_x, 0.0, f32(grid_size));
845    new_y = clamp(new_y, 0.0, f32(grid_size));
846
847    // Energy dissipation
848    new_energy = energy * 0.99;
849
850    new_particles[base_idx] = new_x;
851    new_particles[base_idx + 1u] = new_y;
852    new_particles[base_idx + 2u] = particle_type;
853    new_particles[base_idx + 3u] = new_energy;
854}
855"#;
856
857// =====================================================================
858// ENUMERATIVE GEOMETRY SHADERS
859// =====================================================================
860
861/// Intersection theory computations
862pub const INTERSECTION_THEORY: &str = r#"
863struct RationalNumber {
864    numerator: i32,
865    denominator: i32,
866}
867
868@group(0) @binding(0) var<storage, read> chow_class_a: array<RationalNumber>;
869@group(0) @binding(1) var<storage, read> chow_class_b: array<RationalNumber>;
870@group(0) @binding(2) var<storage, read_write> intersection_result: array<RationalNumber>;
871@group(0) @binding(3) var<storage, read> geometry_params: array<u32>; // [dimension, degree_a, degree_b]
872
873fn gcd(a: u32, b: u32) -> u32 {
874    if (b == 0u) { return a; }
875    return gcd(b, a % b);
876}
877
878fn add_rationals(a: RationalNumber, b: RationalNumber) -> RationalNumber {
879    let num = a.numerator * b.denominator + b.numerator * a.denominator;
880    let den = a.denominator * b.denominator;
881    let g = gcd(u32(abs(num)), u32(abs(den)));
882
883    return RationalNumber(num / i32(g), den / i32(g));
884}
885
886fn multiply_rationals(a: RationalNumber, b: RationalNumber) -> RationalNumber {
887    let num = a.numerator * b.numerator;
888    let den = a.denominator * b.denominator;
889    let g = gcd(u32(abs(num)), u32(abs(den)));
890
891    return RationalNumber(num / i32(g), den / i32(g));
892}
893
894@compute @workgroup_size(256)
895fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
896    let idx = global_id.x;
897
898    if (idx >= arrayLength(&chow_class_a)) {
899        return;
900    }
901
902    let dimension = geometry_params[0];
903    let degree_a = geometry_params[1];
904    let degree_b = geometry_params[2];
905
906    // Intersection product in Chow ring: A · B
907    // For simplicity, implement as pointwise multiplication for this example
908    let a = chow_class_a[idx];
909    let b = chow_class_b[idx];
910
911    // Check degree compatibility (degree_a + degree_b ≤ dimension)
912    if (degree_a + degree_b <= dimension) {
913        intersection_result[idx] = multiply_rationals(a, b);
914    } else {
915        intersection_result[idx] = RationalNumber(0, 1); // Zero class
916    }
917}
918"#;
919
920/// Schubert calculus computations
921const SCHUBERT_CALCULUS: &str = r#"
922@group(0) @binding(0) var<storage, read> partition_a: array<u32>;
923@group(0) @binding(1) var<storage, read> partition_b: array<u32>;
924@group(0) @binding(2) var<storage, read_write> littlewood_coeff: array<u32>;
925@group(0) @binding(3) var<storage, read> grassmann_params: array<u32>; // [n, k]
926
927@compute @workgroup_size(128)
928fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
929    let coeff_idx = global_id.x;
930
931    let n = grassmann_params[0]; // Dimension of ambient space
932    let k = grassmann_params[1]; // Dimension of subspaces
933
934    if (coeff_idx >= arrayLength(&littlewood_coeff)) {
935        return;
936    }
937
938    // Schubert calculus: compute Littlewood-Richardson coefficients
939    // This is a simplified version - full LR coefficients require more complex algorithms
940
941    let max_parts = min(arrayLength(&partition_a), arrayLength(&partition_b));
942    var coefficient = 0u;
943
944    // Simplified intersection number computation
945    for (var i = 0u; i < max_parts; i = i + 1u) {
946        let part_a = partition_a[i];
947        let part_b = partition_b[i];
948
949        // Check compatibility with Grassmannian Gr(k, n)
950        if (part_a <= n - k && part_b <= n - k) {
951            coefficient += part_a * part_b;
952        }
953    }
954
955    littlewood_coeff[coeff_idx] = coefficient;
956}
957"#;
958
959#[cfg(test)]
960mod tests {
961    use super::*;
962
963    #[test]
964    fn test_shader_library_creation() {
965        let library = ShaderLibrary::new();
966        let shaders = library.list_shaders();
967
968        // Should have shaders for all mathematical domains
969        assert!(shaders.contains(&"tropical_matrix_multiply".to_string()));
970        assert!(shaders.contains(&"dual_forward_ad".to_string()));
971        assert!(shaders.contains(&"tropical_dual_clifford".to_string()));
972        assert!(shaders.contains(&"fisher_information".to_string()));
973        assert!(shaders.contains(&"ca_evolution".to_string()));
974        assert!(shaders.contains(&"intersection_theory".to_string()));
975    }
976
977    #[test]
978    fn test_shader_retrieval() {
979        let library = ShaderLibrary::new();
980
981        let shader = library.get_shader("tropical_matrix_multiply");
982        assert!(shader.is_some());
983        assert!(shader.unwrap().contains("@compute"));
984        assert!(shader.unwrap().contains("tropical"));
985    }
986
987    #[test]
988    fn test_shader_constants() {
989        assert_eq!(TROPICAL_SHADERS.len(), 3);
990        assert_eq!(DUAL_SHADERS.len(), 3);
991        assert_eq!(FUSION_SHADERS.len(), 2);
992    }
993}