1use std::collections::HashMap;
7
8pub struct ShaderLibrary {
10 shaders: HashMap<String, &'static str>,
11}
12
13impl ShaderLibrary {
14 pub fn new() -> Self {
16 let mut shaders = HashMap::new();
17
18 shaders.insert(
20 "tropical_matrix_multiply".to_string(),
21 TROPICAL_MATRIX_MULTIPLY,
22 );
23 shaders.insert("tropical_vector_add".to_string(), TROPICAL_VECTOR_ADD);
24 shaders.insert(
25 "tropical_neural_network".to_string(),
26 TROPICAL_NEURAL_NETWORK,
27 );
28
29 shaders.insert("dual_forward_ad".to_string(), DUAL_FORWARD_AD);
31 shaders.insert("dual_batch_gradient".to_string(), DUAL_BATCH_GRADIENT);
32 shaders.insert("dual_chain_rule".to_string(), DUAL_CHAIN_RULE);
33
34 shaders.insert("tropical_dual_clifford".to_string(), TROPICAL_DUAL_CLIFFORD);
36 shaders.insert("fusion_attention".to_string(), FUSION_ATTENTION);
37
38 shaders.insert("fisher_information".to_string(), FISHER_INFORMATION);
40 shaders.insert("kl_divergence_batch".to_string(), KL_DIVERGENCE_BATCH);
41
42 shaders.insert("ca_evolution".to_string(), CA_EVOLUTION);
44 shaders.insert("ca_self_assembly".to_string(), CA_SELF_ASSEMBLY);
45 shaders.insert("rule_application".to_string(), RULE_APPLICATION);
46 shaders.insert("energy_calculation".to_string(), ENERGY_CALCULATION);
47 shaders.insert("neighbor_extraction".to_string(), NEIGHBOR_EXTRACTION);
48
49 shaders.insert("intersection_theory".to_string(), INTERSECTION_THEORY);
51 shaders.insert("schubert_calculus".to_string(), SCHUBERT_CALCULUS);
52
53 Self { shaders }
54 }
55
56 pub fn get_shader(&self, name: &str) -> Option<&'static str> {
58 self.shaders.get(name).copied()
59 }
60
61 pub fn list_shaders(&self) -> Vec<String> {
63 self.shaders.keys().cloned().collect()
64 }
65}
66
67impl Default for ShaderLibrary {
68 fn default() -> Self {
69 Self::new()
70 }
71}
72
73pub const TROPICAL_SHADERS: &[(&str, &str)] = &[
75 ("tropical_matrix_multiply", TROPICAL_MATRIX_MULTIPLY),
76 ("tropical_vector_add", TROPICAL_VECTOR_ADD),
77 ("tropical_neural_network", TROPICAL_NEURAL_NETWORK),
78];
79
80pub const DUAL_SHADERS: &[(&str, &str)] = &[
82 ("dual_forward_ad", DUAL_FORWARD_AD),
83 ("dual_batch_gradient", DUAL_BATCH_GRADIENT),
84 ("dual_chain_rule", DUAL_CHAIN_RULE),
85];
86
87pub const FUSION_SHADERS: &[(&str, &str)] = &[
89 ("tropical_dual_clifford", TROPICAL_DUAL_CLIFFORD),
90 ("fusion_attention", FUSION_ATTENTION),
91];
92
93const TROPICAL_MATRIX_MULTIPLY: &str = r#"
99@group(0) @binding(0) var<storage, read> matrix_a: array<f32>;
100@group(0) @binding(1) var<storage, read> matrix_b: array<f32>;
101@group(0) @binding(2) var<storage, read_write> result: array<f32>;
102@group(0) @binding(3) var<storage, read> dimensions: array<u32>; // [M, N, K]
103
104@compute @workgroup_size(16, 16)
105fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
106 let M = dimensions[0];
107 let N = dimensions[1];
108 let K = dimensions[2];
109
110 let row = global_id.x;
111 let col = global_id.y;
112
113 if (row >= M || col >= N) {
114 return;
115 }
116
117 // Tropical matrix multiplication: (A ⊗ B)[i,j] = max_k(A[i,k] + B[k,j])
118 var max_val = -3.4028235e+38; // -infinity in tropical algebra
119
120 for (var k = 0u; k < K; k = k + 1u) {
121 let a_val = matrix_a[row * K + k];
122 let b_val = matrix_b[k * N + col];
123
124 // Tropical multiplication: a ⊗ b = a + b
125 let tropical_product = a_val + b_val;
126
127 // Tropical addition: max operation
128 if (tropical_product > max_val) {
129 max_val = tropical_product;
130 }
131 }
132
133 result[row * N + col] = max_val;
134}
135"#;
136
137const TROPICAL_VECTOR_ADD: &str = r#"
139@group(0) @binding(0) var<storage, read> vector_a: array<f32>;
140@group(0) @binding(1) var<storage, read> vector_b: array<f32>;
141@group(0) @binding(2) var<storage, read_write> result: array<f32>;
142
143@compute @workgroup_size(256)
144fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
145 let idx = global_id.x;
146
147 if (idx >= arrayLength(&vector_a)) {
148 return;
149 }
150
151 // Tropical addition: a ⊕ b = max(a, b)
152 result[idx] = max(vector_a[idx], vector_b[idx]);
153}
154"#;
155
156const TROPICAL_NEURAL_NETWORK: &str = r#"
158@group(0) @binding(0) var<storage, read> input: array<f32>;
159@group(0) @binding(1) var<storage, read> weights: array<f32>;
160@group(0) @binding(2) var<storage, read> bias: array<f32>;
161@group(0) @binding(3) var<storage, read_write> output: array<f32>;
162@group(0) @binding(4) var<storage, read> dimensions: array<u32>; // [batch_size, input_size, output_size]
163
164@compute @workgroup_size(16, 16)
165fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
166 let batch_idx = global_id.x;
167 let output_idx = global_id.y;
168
169 let batch_size = dimensions[0];
170 let input_size = dimensions[1];
171 let output_size = dimensions[2];
172
173 if (batch_idx >= batch_size || output_idx >= output_size) {
174 return;
175 }
176
177 // Tropical neural network: max-plus linear transformation
178 var max_val = -3.4028235e+38; // -infinity
179
180 for (var i = 0u; i < input_size; i = i + 1u) {
181 let input_val = input[batch_idx * input_size + i];
182 let weight_val = weights[i * output_size + output_idx];
183
184 // Tropical multiplication: input ⊗ weight = input + weight
185 let product = input_val + weight_val;
186
187 // Tropical addition: max operation
188 if (product > max_val) {
189 max_val = product;
190 }
191 }
192
193 // Add bias (tropical addition = max)
194 let bias_val = bias[output_idx];
195 let final_result = max(max_val, bias_val);
196
197 output[batch_idx * output_size + output_idx] = final_result;
198}
199"#;
200
201const DUAL_FORWARD_AD: &str = r#"
207struct DualNumber {
208 real: f32,
209 dual: f32, // derivative part
210}
211
212@group(0) @binding(0) var<storage, read> input_dual: array<DualNumber>;
213@group(0) @binding(1) var<storage, read> operation_params: array<f32>;
214@group(0) @binding(2) var<storage, read_write> output_dual: array<DualNumber>;
215
216@compute @workgroup_size(256)
217fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
218 let idx = global_id.x;
219
220 if (idx >= arrayLength(&input_dual)) {
221 return;
222 }
223
224 let x = input_dual[idx];
225 let op_type = u32(operation_params[0]); // Operation type
226
227 var result: DualNumber;
228
229 // Forward-mode AD for different operations
230 switch (op_type) {
231 case 0u: { // sin(x): (sin(x), cos(x) * dx)
232 result.real = sin(x.real);
233 result.dual = cos(x.real) * x.dual;
234 }
235 case 1u: { // exp(x): (exp(x), exp(x) * dx)
236 let exp_val = exp(x.real);
237 result.real = exp_val;
238 result.dual = exp_val * x.dual;
239 }
240 case 2u: { // x^2: (x^2, 2x * dx)
241 result.real = x.real * x.real;
242 result.dual = 2.0 * x.real * x.dual;
243 }
244 case 3u: { // log(x): (log(x), (1/x) * dx)
245 result.real = log(x.real);
246 result.dual = x.dual / x.real;
247 }
248 default: { // identity
249 result = x;
250 }
251 }
252
253 output_dual[idx] = result;
254}
255"#;
256
257const DUAL_BATCH_GRADIENT: &str = r#"
259struct DualNumber {
260 real: f32,
261 dual: f32,
262}
263
264@group(0) @binding(0) var<storage, read> input_batch: array<DualNumber>;
265@group(0) @binding(1) var<storage, read> function_params: array<f32>;
266@group(0) @binding(2) var<storage, read_write> gradients: array<f32>;
267@group(0) @binding(3) var<storage, read> batch_info: array<u32>; // [batch_size, function_dim]
268
269@compute @workgroup_size(16, 16)
270fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
271 let batch_idx = global_id.x;
272 let var_idx = global_id.y;
273
274 let batch_size = batch_info[0];
275 let function_dim = batch_info[1];
276
277 if (batch_idx >= batch_size || var_idx >= function_dim) {
278 return;
279 }
280
281 let input_idx = batch_idx * function_dim + var_idx;
282 let x = input_batch[input_idx];
283
284 // Compute gradient of composite function f(g(x)) where g is parameterized
285 let param_idx = var_idx % 4u; // Assume up to 4 parameters per function
286 let param = function_params[param_idx];
287
288 // Example: f(x) = param * x^2 + sin(x), gradient = 2 * param * x + cos(x)
289 let gradient = 2.0 * param * x.real + cos(x.real);
290
291 gradients[input_idx] = gradient * x.dual;
292}
293"#;
294
295const DUAL_CHAIN_RULE: &str = r#"
297struct DualNumber {
298 real: f32,
299 dual: f32,
300}
301
302@group(0) @binding(0) var<storage, read> inner_function: array<DualNumber>;
303@group(0) @binding(1) var<storage, read> outer_params: array<f32>;
304@group(0) @binding(2) var<storage, read_write> composed_result: array<DualNumber>;
305
306@compute @workgroup_size(256)
307fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
308 let idx = global_id.x;
309
310 if (idx >= arrayLength(&inner_function)) {
311 return;
312 }
313
314 let u = inner_function[idx]; // u = g(x), du/dx
315 let outer_type = u32(outer_params[0]);
316
317 var result: DualNumber;
318
319 // Chain rule: d/dx[f(g(x))] = f'(g(x)) * g'(x) = f'(u) * du/dx
320 switch (outer_type) {
321 case 0u: { // f(u) = sin(u)
322 result.real = sin(u.real);
323 result.dual = cos(u.real) * u.dual; // cos(u) * du/dx
324 }
325 case 1u: { // f(u) = u^3
326 result.real = u.real * u.real * u.real;
327 result.dual = 3.0 * u.real * u.real * u.dual; // 3u^2 * du/dx
328 }
329 case 2u: { // f(u) = exp(u)
330 let exp_u = exp(u.real);
331 result.real = exp_u;
332 result.dual = exp_u * u.dual; // exp(u) * du/dx
333 }
334 default: { // f(u) = u (identity)
335 result = u;
336 }
337 }
338
339 composed_result[idx] = result;
340}
341"#;
342
343const TROPICAL_DUAL_CLIFFORD: &str = r#"
349struct TropicalNumber {
350 value: f32, // Tropical number value
351}
352
353struct DualNumber {
354 real: f32,
355 dual: f32,
356}
357
358struct Multivector {
359 coeffs: array<f32, 8>, // 3D Clifford algebra: 8 basis elements
360}
361
362struct TropicalDualClifford {
363 tropical: TropicalNumber,
364 dual: DualNumber,
365 clifford: Multivector,
366}
367
368@group(0) @binding(0) var<storage, read> input_batch: array<TropicalDualClifford>;
369@group(0) @binding(1) var<storage, read> operation_params: array<f32>;
370@group(0) @binding(2) var<storage, read_write> output_batch: array<TropicalDualClifford>;
371
372@compute @workgroup_size(64)
373fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
374 let idx = global_id.x;
375
376 if (idx >= arrayLength(&input_batch)) {
377 return;
378 }
379
380 let tdc = input_batch[idx];
381 let op_type = u32(operation_params[0]);
382
383 var result: TropicalDualClifford;
384
385 switch (op_type) {
386 case 0u: { // LLM attention computation
387 // Combine tropical path selection with dual gradients and geometric transformations
388 result.tropical.value = max(tdc.tropical.value, operation_params[1]);
389 result.dual.real = tdc.dual.real * operation_params[2];
390 result.dual.dual = tdc.dual.dual * operation_params[2];
391
392 // Geometric rotation in Clifford algebra
393 let angle = operation_params[3];
394 let cos_half = cos(angle * 0.5);
395 let sin_half = sin(angle * 0.5);
396
397 // Simple rotation around e12 plane
398 result.clifford.coeffs[0] = cos_half * tdc.clifford.coeffs[0]; // scalar
399 result.clifford.coeffs[1] = tdc.clifford.coeffs[1]; // e1
400 result.clifford.coeffs[2] = tdc.clifford.coeffs[2]; // e2
401 result.clifford.coeffs[3] = tdc.clifford.coeffs[3]; // e3
402 result.clifford.coeffs[4] = sin_half * tdc.clifford.coeffs[0]; // e12
403 result.clifford.coeffs[5] = tdc.clifford.coeffs[5]; // e13
404 result.clifford.coeffs[6] = tdc.clifford.coeffs[6]; // e23
405 result.clifford.coeffs[7] = tdc.clifford.coeffs[7]; // e123
406 }
407 default: {
408 result = tdc;
409 }
410 }
411
412 output_batch[idx] = result;
413}
414"#;
415
416const FUSION_ATTENTION: &str = r#"
418@group(0) @binding(0) var<storage, read> queries: array<f32>;
419@group(0) @binding(1) var<storage, read> keys: array<f32>;
420@group(0) @binding(2) var<storage, read> values: array<f32>;
421@group(0) @binding(3) var<storage, read_write> attention_output: array<f32>;
422@group(0) @binding(4) var<storage, read> dimensions: array<u32>; // [seq_len, d_model]
423
424@compute @workgroup_size(16, 16)
425fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
426 let seq_pos = global_id.x;
427 let feature_idx = global_id.y;
428
429 let seq_len = dimensions[0];
430 let d_model = dimensions[1];
431
432 if (seq_pos >= seq_len || feature_idx >= d_model) {
433 return;
434 }
435
436 // Tropical attention: use max-plus algebra instead of softmax
437 var max_score = -3.4028235e+38; // -infinity
438 var best_key_idx = 0u;
439
440 // Find the key with maximum tropical attention score
441 for (var key_idx = 0u; key_idx < seq_len; key_idx = key_idx + 1u) {
442 var score = -3.4028235e+38;
443
444 // Compute tropical dot product: sum becomes max, product becomes sum
445 for (var d = 0u; d < d_model; d = d + 1u) {
446 let q = queries[seq_pos * d_model + d];
447 let k = keys[key_idx * d_model + d];
448
449 // Tropical multiplication: q ⊗ k = q + k
450 let tropical_product = q + k;
451
452 // Tropical sum: max operation
453 if (tropical_product > score) {
454 score = tropical_product;
455 }
456 }
457
458 if (score > max_score) {
459 max_score = score;
460 best_key_idx = key_idx;
461 }
462 }
463
464 // Tropical attention: select value from best key (winner-takes-all)
465 attention_output[seq_pos * d_model + feature_idx] =
466 values[best_key_idx * d_model + feature_idx];
467}
468"#;
469
470const FISHER_INFORMATION: &str = r#"
476@group(0) @binding(0) var<storage, read> probability_params: array<f32>;
477@group(0) @binding(1) var<storage, read> data_points: array<f32>;
478@group(0) @binding(2) var<storage, read_write> fisher_matrix: array<f32>;
479@group(0) @binding(3) var<storage, read> dimensions: array<u32>; // [n_params, n_data]
480
481@compute @workgroup_size(16, 16)
482fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
483 let param_i = global_id.x;
484 let param_j = global_id.y;
485
486 let n_params = dimensions[0];
487 let n_data = dimensions[1];
488
489 if (param_i >= n_params || param_j >= n_params) {
490 return;
491 }
492
493 // Fisher Information Matrix: I[i,j] = E[∂²log p(x|θ)/∂θᵢ∂θⱼ]
494 var fisher_element = 0.0;
495
496 for (var data_idx = 0u; data_idx < n_data; data_idx = data_idx + 1u) {
497 let x = data_points[data_idx];
498
499 // Gaussian log-likelihood example: log p(x|μ,σ) = -½log(2πσ²) - (x-μ)²/(2σ²)
500 let mu = probability_params[0];
501 let sigma = probability_params[1];
502 let sigma_sq = sigma * sigma;
503
504 var d2_log_p = 0.0;
505
506 if (param_i == 0u && param_j == 0u) { // ∂²/∂μ²
507 d2_log_p = -1.0 / sigma_sq;
508 } else if (param_i == 1u && param_j == 1u) { // ∂²/∂σ²
509 let diff = x - mu;
510 d2_log_p = -1.0 / sigma_sq + 3.0 * diff * diff / (sigma_sq * sigma_sq);
511 } else if ((param_i == 0u && param_j == 1u) || (param_i == 1u && param_j == 0u)) { // ∂²/∂μ∂σ
512 let diff = x - mu;
513 d2_log_p = 2.0 * diff / (sigma_sq * sigma);
514 }
515
516 fisher_element += -d2_log_p; // Fisher = -E[Hessian of log-likelihood]
517 }
518
519 fisher_matrix[param_i * n_params + param_j] = fisher_element / f32(n_data);
520}
521"#;
522
523const KL_DIVERGENCE_BATCH: &str = r#"
525@group(0) @binding(0) var<storage, read> distribution_p: array<f32>;
526@group(0) @binding(1) var<storage, read> distribution_q: array<f32>;
527@group(0) @binding(2) var<storage, read_write> kl_divergences: array<f32>;
528@group(0) @binding(3) var<storage, read> batch_info: array<u32>; // [batch_size, dist_size]
529
530@compute @workgroup_size(256)
531fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
532 let batch_idx = global_id.x;
533 let batch_size = batch_info[0];
534 let dist_size = batch_info[1];
535
536 if (batch_idx >= batch_size) {
537 return;
538 }
539
540 // KL divergence: D_KL(P||Q) = Σ P(x) log(P(x)/Q(x))
541 var kl_div = 0.0;
542
543 for (var i = 0u; i < dist_size; i = i + 1u) {
544 let p_i = distribution_p[batch_idx * dist_size + i];
545 let q_i = distribution_q[batch_idx * dist_size + i];
546
547 if (p_i > 1e-10 && q_i > 1e-10) { // Avoid log(0)
548 kl_div += p_i * log(p_i / q_i);
549 }
550 }
551
552 kl_divergences[batch_idx] = kl_div;
553}
554"#;
555
556pub const CA_EVOLUTION: &str = r#"
562@group(0) @binding(0) var<storage, read> current_state: array<u32>;
563@group(0) @binding(1) var<storage, read_write> next_state: array<u32>;
564@group(0) @binding(2) var<storage, read> rules: array<u32>;
565@group(0) @binding(3) var<storage, read> dimensions: array<u32>; // [width, height]
566
567@compute @workgroup_size(16, 16)
568fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
569 let x = global_id.x;
570 let y = global_id.y;
571
572 let width = dimensions[0];
573 let height = dimensions[1];
574
575 if (x >= width || y >= height) {
576 return;
577 }
578
579 let idx = y * width + x;
580 let current_cell = current_state[idx];
581
582 // Count alive neighbors (Moore neighborhood)
583 var alive_neighbors = 0u;
584
585 for (var dy = 0u; dy < 3u; dy = dy + 1u) {
586 for (var dx = 0u; dx < 3u; dx = dx + 1u) {
587 if (dx == 1u && dy == 1u) { continue; } // Skip center cell
588
589 let nx = (x + dx + width - 1u) % width; // Wrap around
590 let ny = (y + dy + height - 1u) % height;
591 let neighbor_idx = ny * width + nx;
592
593 if (current_state[neighbor_idx] == 1u) {
594 alive_neighbors = alive_neighbors + 1u;
595 }
596 }
597 }
598
599 // Conway's Game of Life rules (can be customized via rules buffer)
600 var new_state = 0u;
601
602 if (current_cell == 1u) { // Currently alive
603 if (alive_neighbors == 2u || alive_neighbors == 3u) {
604 new_state = 1u; // Survive
605 }
606 } else { // Currently dead
607 if (alive_neighbors == 3u) {
608 new_state = 1u; // Birth
609 }
610 }
611
612 next_state[idx] = new_state;
613}
614"#;
615
616pub const RULE_APPLICATION: &str = r#"
618struct GpuCellData {
619 scalar: f32,
620 e1: f32,
621 e2: f32,
622 e3: f32,
623 e12: f32,
624 e13: f32,
625 e23: f32,
626 e123: f32,
627 generation: f32,
628 neighborhood_size: f32,
629 rule_type: f32,
630 boundary_condition: f32,
631 padding: array<f32, 4>,
632}
633
634struct GpuRuleConfig {
635 rule_type: f32,
636 threshold: f32,
637 damping_factor: f32,
638 energy_conservation: f32,
639 time_step: f32,
640 spatial_scale: f32,
641 geometric_weight: f32,
642 nonlinear_factor: f32,
643 boundary_type: f32,
644 neighborhood_radius: f32,
645 evolution_speed: f32,
646 stability_factor: f32,
647 padding: array<f32, 4>,
648}
649
650@group(0) @binding(0) var<storage, read> cells: array<GpuCellData>;
651@group(0) @binding(1) var<storage, read> rules: array<GpuRuleConfig>;
652@group(0) @binding(2) var<storage, read_write> output: array<GpuCellData>;
653
654@compute @workgroup_size(256)
655fn rule_application_main(@builtin(global_invocation_id) global_id: vec3<u32>) {
656 let idx = global_id.x;
657
658 if (idx >= arrayLength(&cells)) {
659 return;
660 }
661
662 let cell = cells[idx];
663 let rule = rules[0]; // Use first rule for now
664
665 var new_cell = cell;
666
667 // Apply damping factor
668 new_cell.scalar = cell.scalar * (1.0 - rule.damping_factor);
669 new_cell.e1 = cell.e1 * (1.0 - rule.damping_factor);
670 new_cell.e2 = cell.e2 * (1.0 - rule.damping_factor);
671 new_cell.e3 = cell.e3 * (1.0 - rule.damping_factor);
672 new_cell.e12 = cell.e12 * (1.0 - rule.damping_factor);
673 new_cell.e13 = cell.e13 * (1.0 - rule.damping_factor);
674 new_cell.e23 = cell.e23 * (1.0 - rule.damping_factor);
675 new_cell.e123 = cell.e123 * (1.0 - rule.damping_factor);
676
677 // Apply threshold
678 if (abs(new_cell.scalar) < rule.threshold) {
679 new_cell.scalar = 0.0;
680 }
681
682 output[idx] = new_cell;
683}
684"#;
685
686pub const ENERGY_CALCULATION: &str = r#"
688struct GpuCellData {
689 scalar: f32,
690 e1: f32,
691 e2: f32,
692 e3: f32,
693 e12: f32,
694 e13: f32,
695 e23: f32,
696 e123: f32,
697 generation: f32,
698 neighborhood_size: f32,
699 rule_type: f32,
700 boundary_condition: f32,
701 padding: array<f32, 4>,
702}
703
704@group(0) @binding(0) var<storage, read> cells: array<GpuCellData>;
705@group(0) @binding(1) var<storage, read_write> total_energy: array<f32>;
706
707@compute @workgroup_size(1)
708fn energy_calculation_main(@builtin(global_invocation_id) global_id: vec3<u32>) {
709 var energy = 0.0;
710
711 // Sum the squared magnitudes of all multivector components
712 for (var i = 0u; i < arrayLength(&cells); i = i + 1u) {
713 let cell = cells[i];
714 energy += cell.scalar * cell.scalar;
715 energy += cell.e1 * cell.e1;
716 energy += cell.e2 * cell.e2;
717 energy += cell.e3 * cell.e3;
718 energy += cell.e12 * cell.e12;
719 energy += cell.e13 * cell.e13;
720 energy += cell.e23 * cell.e23;
721 energy += cell.e123 * cell.e123;
722 }
723
724 total_energy[0] = energy;
725}
726"#;
727
728pub const NEIGHBOR_EXTRACTION: &str = r#"
730struct GpuCellData {
731 scalar: f32,
732 e1: f32,
733 e2: f32,
734 e3: f32,
735 e12: f32,
736 e13: f32,
737 e23: f32,
738 e123: f32,
739 generation: f32,
740 neighborhood_size: f32,
741 rule_type: f32,
742 boundary_condition: f32,
743 padding: array<f32, 4>,
744}
745
746@group(0) @binding(0) var<storage, read> cells: array<GpuCellData>;
747@group(0) @binding(1) var<uniform> params: array<f32, 4>; // [width, height, total_cells, padding]
748@group(0) @binding(2) var<storage, read_write> neighborhoods: array<GpuCellData>;
749
750@compute @workgroup_size(256)
751fn neighbor_extraction_main(@builtin(global_invocation_id) global_id: vec3<u32>) {
752 let idx = global_id.x;
753 let width = u32(params[0]);
754 let height = u32(params[1]);
755 let total_cells = u32(params[2]);
756
757 if (idx >= total_cells) {
758 return;
759 }
760
761 // Calculate 2D position from linear index
762 let x = idx % width;
763 let y = idx / width;
764
765 // Moore neighborhood: 8 neighbors
766 let offsets = array<vec2<i32>, 8>(
767 vec2<i32>(-1, -1), vec2<i32>(0, -1), vec2<i32>(1, -1),
768 vec2<i32>(-1, 0), vec2<i32>(1, 0),
769 vec2<i32>(-1, 1), vec2<i32>(0, 1), vec2<i32>(1, 1)
770 );
771
772 // Extract neighbors with wrapping boundaries
773 for (var i = 0u; i < 8u; i = i + 1u) {
774 let offset = offsets[i];
775 let nx = (i32(x) + offset.x + i32(width)) % i32(width);
776 let ny = (i32(y) + offset.y + i32(height)) % i32(height);
777 let neighbor_idx = u32(ny) * width + u32(nx);
778
779 // Store neighbor in output array
780 neighborhoods[idx * 8u + i] = cells[neighbor_idx];
781 }
782}
783"#;
784
785const CA_SELF_ASSEMBLY: &str = r#"
787@group(0) @binding(0) var<storage, read> particles: array<f32>; // [x, y, type, energy]
788@group(0) @binding(1) var<storage, read_write> new_particles: array<f32>;
789@group(0) @binding(2) var<storage, read> assembly_rules: array<f32>;
790@group(0) @binding(3) var<storage, read> simulation_params: array<u32>; // [n_particles, grid_size]
791
792@compute @workgroup_size(64)
793fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
794 let particle_idx = global_id.x;
795 let n_particles = simulation_params[0];
796 let grid_size = simulation_params[1];
797
798 if (particle_idx >= n_particles) {
799 return;
800 }
801
802 let base_idx = particle_idx * 4u;
803 let x = particles[base_idx];
804 let y = particles[base_idx + 1u];
805 let particle_type = particles[base_idx + 2u];
806 let energy = particles[base_idx + 3u];
807
808 // Self-assembly based on local interactions
809 var new_x = x;
810 var new_y = y;
811 var new_energy = energy;
812
813 // Calculate forces from nearby particles
814 var force_x = 0.0;
815 var force_y = 0.0;
816
817 for (var other_idx = 0u; other_idx < n_particles; other_idx = other_idx + 1u) {
818 if (other_idx == particle_idx) { continue; }
819
820 let other_base = other_idx * 4u;
821 let other_x = particles[other_base];
822 let other_y = particles[other_base + 1u];
823 let other_type = particles[other_base + 2u];
824
825 let dx = other_x - x;
826 let dy = other_y - y;
827 let distance = sqrt(dx * dx + dy * dy);
828
829 if (distance < 5.0 && distance > 0.1) { // Interaction range
830 let interaction_strength = assembly_rules[u32(particle_type) * 4u + u32(other_type)];
831
832 // Attractive/repulsive force based on particle types
833 let force_magnitude = interaction_strength / (distance * distance);
834 force_x += force_magnitude * dx / distance;
835 force_y += force_magnitude * dy / distance;
836 }
837 }
838
839 // Update position based on forces
840 new_x += force_x * 0.1; // time step
841 new_y += force_y * 0.1;
842
843 // Keep within bounds
844 new_x = clamp(new_x, 0.0, f32(grid_size));
845 new_y = clamp(new_y, 0.0, f32(grid_size));
846
847 // Energy dissipation
848 new_energy = energy * 0.99;
849
850 new_particles[base_idx] = new_x;
851 new_particles[base_idx + 1u] = new_y;
852 new_particles[base_idx + 2u] = particle_type;
853 new_particles[base_idx + 3u] = new_energy;
854}
855"#;
856
857pub const INTERSECTION_THEORY: &str = r#"
863struct RationalNumber {
864 numerator: i32,
865 denominator: i32,
866}
867
868@group(0) @binding(0) var<storage, read> chow_class_a: array<RationalNumber>;
869@group(0) @binding(1) var<storage, read> chow_class_b: array<RationalNumber>;
870@group(0) @binding(2) var<storage, read_write> intersection_result: array<RationalNumber>;
871@group(0) @binding(3) var<storage, read> geometry_params: array<u32>; // [dimension, degree_a, degree_b]
872
873fn gcd(a: u32, b: u32) -> u32 {
874 if (b == 0u) { return a; }
875 return gcd(b, a % b);
876}
877
878fn add_rationals(a: RationalNumber, b: RationalNumber) -> RationalNumber {
879 let num = a.numerator * b.denominator + b.numerator * a.denominator;
880 let den = a.denominator * b.denominator;
881 let g = gcd(u32(abs(num)), u32(abs(den)));
882
883 return RationalNumber(num / i32(g), den / i32(g));
884}
885
886fn multiply_rationals(a: RationalNumber, b: RationalNumber) -> RationalNumber {
887 let num = a.numerator * b.numerator;
888 let den = a.denominator * b.denominator;
889 let g = gcd(u32(abs(num)), u32(abs(den)));
890
891 return RationalNumber(num / i32(g), den / i32(g));
892}
893
894@compute @workgroup_size(256)
895fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
896 let idx = global_id.x;
897
898 if (idx >= arrayLength(&chow_class_a)) {
899 return;
900 }
901
902 let dimension = geometry_params[0];
903 let degree_a = geometry_params[1];
904 let degree_b = geometry_params[2];
905
906 // Intersection product in Chow ring: A · B
907 // For simplicity, implement as pointwise multiplication for this example
908 let a = chow_class_a[idx];
909 let b = chow_class_b[idx];
910
911 // Check degree compatibility (degree_a + degree_b ≤ dimension)
912 if (degree_a + degree_b <= dimension) {
913 intersection_result[idx] = multiply_rationals(a, b);
914 } else {
915 intersection_result[idx] = RationalNumber(0, 1); // Zero class
916 }
917}
918"#;
919
920const SCHUBERT_CALCULUS: &str = r#"
922@group(0) @binding(0) var<storage, read> partition_a: array<u32>;
923@group(0) @binding(1) var<storage, read> partition_b: array<u32>;
924@group(0) @binding(2) var<storage, read_write> littlewood_coeff: array<u32>;
925@group(0) @binding(3) var<storage, read> grassmann_params: array<u32>; // [n, k]
926
927@compute @workgroup_size(128)
928fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
929 let coeff_idx = global_id.x;
930
931 let n = grassmann_params[0]; // Dimension of ambient space
932 let k = grassmann_params[1]; // Dimension of subspaces
933
934 if (coeff_idx >= arrayLength(&littlewood_coeff)) {
935 return;
936 }
937
938 // Schubert calculus: compute Littlewood-Richardson coefficients
939 // This is a simplified version - full LR coefficients require more complex algorithms
940
941 let max_parts = min(arrayLength(&partition_a), arrayLength(&partition_b));
942 var coefficient = 0u;
943
944 // Simplified intersection number computation
945 for (var i = 0u; i < max_parts; i = i + 1u) {
946 let part_a = partition_a[i];
947 let part_b = partition_b[i];
948
949 // Check compatibility with Grassmannian Gr(k, n)
950 if (part_a <= n - k && part_b <= n - k) {
951 coefficient += part_a * part_b;
952 }
953 }
954
955 littlewood_coeff[coeff_idx] = coefficient;
956}
957"#;
958
959#[cfg(test)]
960mod tests {
961 use super::*;
962
963 #[test]
964 fn test_shader_library_creation() {
965 let library = ShaderLibrary::new();
966 let shaders = library.list_shaders();
967
968 assert!(shaders.contains(&"tropical_matrix_multiply".to_string()));
970 assert!(shaders.contains(&"dual_forward_ad".to_string()));
971 assert!(shaders.contains(&"tropical_dual_clifford".to_string()));
972 assert!(shaders.contains(&"fisher_information".to_string()));
973 assert!(shaders.contains(&"ca_evolution".to_string()));
974 assert!(shaders.contains(&"intersection_theory".to_string()));
975 }
976
977 #[test]
978 fn test_shader_retrieval() {
979 let library = ShaderLibrary::new();
980
981 let shader = library.get_shader("tropical_matrix_multiply");
982 assert!(shader.is_some());
983 assert!(shader.unwrap().contains("@compute"));
984 assert!(shader.unwrap().contains("tropical"));
985 }
986
987 #[test]
988 fn test_shader_constants() {
989 assert_eq!(TROPICAL_SHADERS.len(), 3);
990 assert_eq!(DUAL_SHADERS.len(), 3);
991 assert_eq!(FUSION_SHADERS.len(), 2);
992 }
993}