1use std::collections::HashMap;
7
8pub struct ShaderLibrary {
10 shaders: HashMap<String, &'static str>,
11}
12
13impl ShaderLibrary {
14 pub fn new() -> Self {
16 let mut shaders = HashMap::new();
17
18 shaders.insert(
20 "tropical_matrix_multiply".to_string(),
21 TROPICAL_MATRIX_MULTIPLY,
22 );
23 shaders.insert("tropical_vector_add".to_string(), TROPICAL_VECTOR_ADD);
24 shaders.insert(
25 "tropical_neural_network".to_string(),
26 TROPICAL_NEURAL_NETWORK,
27 );
28
29 shaders.insert("dual_forward_ad".to_string(), DUAL_FORWARD_AD);
31 shaders.insert("dual_batch_gradient".to_string(), DUAL_BATCH_GRADIENT);
32 shaders.insert("dual_chain_rule".to_string(), DUAL_CHAIN_RULE);
33
34 shaders.insert("tropical_dual_clifford".to_string(), TROPICAL_DUAL_CLIFFORD);
36 shaders.insert("fusion_attention".to_string(), FUSION_ATTENTION);
37
38 shaders.insert("fisher_information".to_string(), FISHER_INFORMATION);
40 shaders.insert("kl_divergence_batch".to_string(), KL_DIVERGENCE_BATCH);
41
42 shaders.insert("ca_evolution".to_string(), CA_EVOLUTION);
44 shaders.insert("ca_self_assembly".to_string(), CA_SELF_ASSEMBLY);
45
46 shaders.insert("intersection_theory".to_string(), INTERSECTION_THEORY);
48 shaders.insert("schubert_calculus".to_string(), SCHUBERT_CALCULUS);
49
50 Self { shaders }
51 }
52
53 pub fn get_shader(&self, name: &str) -> Option<&'static str> {
55 self.shaders.get(name).copied()
56 }
57
58 pub fn list_shaders(&self) -> Vec<String> {
60 self.shaders.keys().cloned().collect()
61 }
62}
63
64impl Default for ShaderLibrary {
65 fn default() -> Self {
66 Self::new()
67 }
68}
69
70pub const TROPICAL_SHADERS: &[(&str, &str)] = &[
72 ("tropical_matrix_multiply", TROPICAL_MATRIX_MULTIPLY),
73 ("tropical_vector_add", TROPICAL_VECTOR_ADD),
74 ("tropical_neural_network", TROPICAL_NEURAL_NETWORK),
75];
76
77pub const DUAL_SHADERS: &[(&str, &str)] = &[
79 ("dual_forward_ad", DUAL_FORWARD_AD),
80 ("dual_batch_gradient", DUAL_BATCH_GRADIENT),
81 ("dual_chain_rule", DUAL_CHAIN_RULE),
82];
83
84pub const FUSION_SHADERS: &[(&str, &str)] = &[
86 ("tropical_dual_clifford", TROPICAL_DUAL_CLIFFORD),
87 ("fusion_attention", FUSION_ATTENTION),
88];
89
90const TROPICAL_MATRIX_MULTIPLY: &str = r#"
96@group(0) @binding(0) var<storage, read> matrix_a: array<f32>;
97@group(0) @binding(1) var<storage, read> matrix_b: array<f32>;
98@group(0) @binding(2) var<storage, read_write> result: array<f32>;
99@group(0) @binding(3) var<storage, read> dimensions: array<u32>; // [M, N, K]
100
101@compute @workgroup_size(16, 16)
102fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
103 let M = dimensions[0];
104 let N = dimensions[1];
105 let K = dimensions[2];
106
107 let row = global_id.x;
108 let col = global_id.y;
109
110 if (row >= M || col >= N) {
111 return;
112 }
113
114 // Tropical matrix multiplication: (A ⊗ B)[i,j] = max_k(A[i,k] + B[k,j])
115 var max_val = -3.4028235e+38; // -infinity in tropical algebra
116
117 for (var k = 0u; k < K; k = k + 1u) {
118 let a_val = matrix_a[row * K + k];
119 let b_val = matrix_b[k * N + col];
120
121 // Tropical multiplication: a ⊗ b = a + b
122 let tropical_product = a_val + b_val;
123
124 // Tropical addition: max operation
125 if (tropical_product > max_val) {
126 max_val = tropical_product;
127 }
128 }
129
130 result[row * N + col] = max_val;
131}
132"#;
133
134const TROPICAL_VECTOR_ADD: &str = r#"
136@group(0) @binding(0) var<storage, read> vector_a: array<f32>;
137@group(0) @binding(1) var<storage, read> vector_b: array<f32>;
138@group(0) @binding(2) var<storage, read_write> result: array<f32>;
139
140@compute @workgroup_size(256)
141fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
142 let idx = global_id.x;
143
144 if (idx >= arrayLength(&vector_a)) {
145 return;
146 }
147
148 // Tropical addition: a ⊕ b = max(a, b)
149 result[idx] = max(vector_a[idx], vector_b[idx]);
150}
151"#;
152
153const TROPICAL_NEURAL_NETWORK: &str = r#"
155@group(0) @binding(0) var<storage, read> input: array<f32>;
156@group(0) @binding(1) var<storage, read> weights: array<f32>;
157@group(0) @binding(2) var<storage, read> bias: array<f32>;
158@group(0) @binding(3) var<storage, read_write> output: array<f32>;
159@group(0) @binding(4) var<storage, read> dimensions: array<u32>; // [batch_size, input_size, output_size]
160
161@compute @workgroup_size(16, 16)
162fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
163 let batch_idx = global_id.x;
164 let output_idx = global_id.y;
165
166 let batch_size = dimensions[0];
167 let input_size = dimensions[1];
168 let output_size = dimensions[2];
169
170 if (batch_idx >= batch_size || output_idx >= output_size) {
171 return;
172 }
173
174 // Tropical neural network: max-plus linear transformation
175 var max_val = -3.4028235e+38; // -infinity
176
177 for (var i = 0u; i < input_size; i = i + 1u) {
178 let input_val = input[batch_idx * input_size + i];
179 let weight_val = weights[i * output_size + output_idx];
180
181 // Tropical multiplication: input ⊗ weight = input + weight
182 let product = input_val + weight_val;
183
184 // Tropical addition: max operation
185 if (product > max_val) {
186 max_val = product;
187 }
188 }
189
190 // Add bias (tropical addition = max)
191 let bias_val = bias[output_idx];
192 let final_result = max(max_val, bias_val);
193
194 output[batch_idx * output_size + output_idx] = final_result;
195}
196"#;
197
198const DUAL_FORWARD_AD: &str = r#"
204struct DualNumber {
205 real: f32,
206 dual: f32, // derivative part
207}
208
209@group(0) @binding(0) var<storage, read> input_dual: array<DualNumber>;
210@group(0) @binding(1) var<storage, read> operation_params: array<f32>;
211@group(0) @binding(2) var<storage, read_write> output_dual: array<DualNumber>;
212
213@compute @workgroup_size(256)
214fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
215 let idx = global_id.x;
216
217 if (idx >= arrayLength(&input_dual)) {
218 return;
219 }
220
221 let x = input_dual[idx];
222 let op_type = u32(operation_params[0]); // Operation type
223
224 var result: DualNumber;
225
226 // Forward-mode AD for different operations
227 switch (op_type) {
228 case 0u: { // sin(x): (sin(x), cos(x) * dx)
229 result.real = sin(x.real);
230 result.dual = cos(x.real) * x.dual;
231 }
232 case 1u: { // exp(x): (exp(x), exp(x) * dx)
233 let exp_val = exp(x.real);
234 result.real = exp_val;
235 result.dual = exp_val * x.dual;
236 }
237 case 2u: { // x^2: (x^2, 2x * dx)
238 result.real = x.real * x.real;
239 result.dual = 2.0 * x.real * x.dual;
240 }
241 case 3u: { // log(x): (log(x), (1/x) * dx)
242 result.real = log(x.real);
243 result.dual = x.dual / x.real;
244 }
245 default: { // identity
246 result = x;
247 }
248 }
249
250 output_dual[idx] = result;
251}
252"#;
253
254const DUAL_BATCH_GRADIENT: &str = r#"
256struct DualNumber {
257 real: f32,
258 dual: f32,
259}
260
261@group(0) @binding(0) var<storage, read> input_batch: array<DualNumber>;
262@group(0) @binding(1) var<storage, read> function_params: array<f32>;
263@group(0) @binding(2) var<storage, read_write> gradients: array<f32>;
264@group(0) @binding(3) var<storage, read> batch_info: array<u32>; // [batch_size, function_dim]
265
266@compute @workgroup_size(16, 16)
267fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
268 let batch_idx = global_id.x;
269 let var_idx = global_id.y;
270
271 let batch_size = batch_info[0];
272 let function_dim = batch_info[1];
273
274 if (batch_idx >= batch_size || var_idx >= function_dim) {
275 return;
276 }
277
278 let input_idx = batch_idx * function_dim + var_idx;
279 let x = input_batch[input_idx];
280
281 // Compute gradient of composite function f(g(x)) where g is parameterized
282 let param_idx = var_idx % 4u; // Assume up to 4 parameters per function
283 let param = function_params[param_idx];
284
285 // Example: f(x) = param * x^2 + sin(x), gradient = 2 * param * x + cos(x)
286 let gradient = 2.0 * param * x.real + cos(x.real);
287
288 gradients[input_idx] = gradient * x.dual;
289}
290"#;
291
292const DUAL_CHAIN_RULE: &str = r#"
294struct DualNumber {
295 real: f32,
296 dual: f32,
297}
298
299@group(0) @binding(0) var<storage, read> inner_function: array<DualNumber>;
300@group(0) @binding(1) var<storage, read> outer_params: array<f32>;
301@group(0) @binding(2) var<storage, read_write> composed_result: array<DualNumber>;
302
303@compute @workgroup_size(256)
304fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
305 let idx = global_id.x;
306
307 if (idx >= arrayLength(&inner_function)) {
308 return;
309 }
310
311 let u = inner_function[idx]; // u = g(x), du/dx
312 let outer_type = u32(outer_params[0]);
313
314 var result: DualNumber;
315
316 // Chain rule: d/dx[f(g(x))] = f'(g(x)) * g'(x) = f'(u) * du/dx
317 switch (outer_type) {
318 case 0u: { // f(u) = sin(u)
319 result.real = sin(u.real);
320 result.dual = cos(u.real) * u.dual; // cos(u) * du/dx
321 }
322 case 1u: { // f(u) = u^3
323 result.real = u.real * u.real * u.real;
324 result.dual = 3.0 * u.real * u.real * u.dual; // 3u^2 * du/dx
325 }
326 case 2u: { // f(u) = exp(u)
327 let exp_u = exp(u.real);
328 result.real = exp_u;
329 result.dual = exp_u * u.dual; // exp(u) * du/dx
330 }
331 default: { // f(u) = u (identity)
332 result = u;
333 }
334 }
335
336 composed_result[idx] = result;
337}
338"#;
339
340const TROPICAL_DUAL_CLIFFORD: &str = r#"
346struct TropicalNumber {
347 value: f32, // Tropical number value
348}
349
350struct DualNumber {
351 real: f32,
352 dual: f32,
353}
354
355struct Multivector {
356 coeffs: array<f32, 8>, // 3D Clifford algebra: 8 basis elements
357}
358
359struct TropicalDualClifford {
360 tropical: TropicalNumber,
361 dual: DualNumber,
362 clifford: Multivector,
363}
364
365@group(0) @binding(0) var<storage, read> input_batch: array<TropicalDualClifford>;
366@group(0) @binding(1) var<storage, read> operation_params: array<f32>;
367@group(0) @binding(2) var<storage, read_write> output_batch: array<TropicalDualClifford>;
368
369@compute @workgroup_size(64)
370fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
371 let idx = global_id.x;
372
373 if (idx >= arrayLength(&input_batch)) {
374 return;
375 }
376
377 let tdc = input_batch[idx];
378 let op_type = u32(operation_params[0]);
379
380 var result: TropicalDualClifford;
381
382 switch (op_type) {
383 case 0u: { // LLM attention computation
384 // Combine tropical path selection with dual gradients and geometric transformations
385 result.tropical.value = max(tdc.tropical.value, operation_params[1]);
386 result.dual.real = tdc.dual.real * operation_params[2];
387 result.dual.dual = tdc.dual.dual * operation_params[2];
388
389 // Geometric rotation in Clifford algebra
390 let angle = operation_params[3];
391 let cos_half = cos(angle * 0.5);
392 let sin_half = sin(angle * 0.5);
393
394 // Simple rotation around e12 plane
395 result.clifford.coeffs[0] = cos_half * tdc.clifford.coeffs[0]; // scalar
396 result.clifford.coeffs[1] = tdc.clifford.coeffs[1]; // e1
397 result.clifford.coeffs[2] = tdc.clifford.coeffs[2]; // e2
398 result.clifford.coeffs[3] = tdc.clifford.coeffs[3]; // e3
399 result.clifford.coeffs[4] = sin_half * tdc.clifford.coeffs[0]; // e12
400 result.clifford.coeffs[5] = tdc.clifford.coeffs[5]; // e13
401 result.clifford.coeffs[6] = tdc.clifford.coeffs[6]; // e23
402 result.clifford.coeffs[7] = tdc.clifford.coeffs[7]; // e123
403 }
404 default: {
405 result = tdc;
406 }
407 }
408
409 output_batch[idx] = result;
410}
411"#;
412
413const FUSION_ATTENTION: &str = r#"
415@group(0) @binding(0) var<storage, read> queries: array<f32>;
416@group(0) @binding(1) var<storage, read> keys: array<f32>;
417@group(0) @binding(2) var<storage, read> values: array<f32>;
418@group(0) @binding(3) var<storage, read_write> attention_output: array<f32>;
419@group(0) @binding(4) var<storage, read> dimensions: array<u32>; // [seq_len, d_model]
420
421@compute @workgroup_size(16, 16)
422fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
423 let seq_pos = global_id.x;
424 let feature_idx = global_id.y;
425
426 let seq_len = dimensions[0];
427 let d_model = dimensions[1];
428
429 if (seq_pos >= seq_len || feature_idx >= d_model) {
430 return;
431 }
432
433 // Tropical attention: use max-plus algebra instead of softmax
434 var max_score = -3.4028235e+38; // -infinity
435 var best_key_idx = 0u;
436
437 // Find the key with maximum tropical attention score
438 for (var key_idx = 0u; key_idx < seq_len; key_idx = key_idx + 1u) {
439 var score = -3.4028235e+38;
440
441 // Compute tropical dot product: sum becomes max, product becomes sum
442 for (var d = 0u; d < d_model; d = d + 1u) {
443 let q = queries[seq_pos * d_model + d];
444 let k = keys[key_idx * d_model + d];
445
446 // Tropical multiplication: q ⊗ k = q + k
447 let tropical_product = q + k;
448
449 // Tropical sum: max operation
450 if (tropical_product > score) {
451 score = tropical_product;
452 }
453 }
454
455 if (score > max_score) {
456 max_score = score;
457 best_key_idx = key_idx;
458 }
459 }
460
461 // Tropical attention: select value from best key (winner-takes-all)
462 attention_output[seq_pos * d_model + feature_idx] =
463 values[best_key_idx * d_model + feature_idx];
464}
465"#;
466
467const FISHER_INFORMATION: &str = r#"
473@group(0) @binding(0) var<storage, read> probability_params: array<f32>;
474@group(0) @binding(1) var<storage, read> data_points: array<f32>;
475@group(0) @binding(2) var<storage, read_write> fisher_matrix: array<f32>;
476@group(0) @binding(3) var<storage, read> dimensions: array<u32>; // [n_params, n_data]
477
478@compute @workgroup_size(16, 16)
479fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
480 let param_i = global_id.x;
481 let param_j = global_id.y;
482
483 let n_params = dimensions[0];
484 let n_data = dimensions[1];
485
486 if (param_i >= n_params || param_j >= n_params) {
487 return;
488 }
489
490 // Fisher Information Matrix: I[i,j] = E[∂²log p(x|θ)/∂θᵢ∂θⱼ]
491 var fisher_element = 0.0;
492
493 for (var data_idx = 0u; data_idx < n_data; data_idx = data_idx + 1u) {
494 let x = data_points[data_idx];
495
496 // Gaussian log-likelihood example: log p(x|μ,σ) = -½log(2πσ²) - (x-μ)²/(2σ²)
497 let mu = probability_params[0];
498 let sigma = probability_params[1];
499 let sigma_sq = sigma * sigma;
500
501 var d2_log_p = 0.0;
502
503 if (param_i == 0u && param_j == 0u) { // ∂²/∂μ²
504 d2_log_p = -1.0 / sigma_sq;
505 } else if (param_i == 1u && param_j == 1u) { // ∂²/∂σ²
506 let diff = x - mu;
507 d2_log_p = -1.0 / sigma_sq + 3.0 * diff * diff / (sigma_sq * sigma_sq);
508 } else if ((param_i == 0u && param_j == 1u) || (param_i == 1u && param_j == 0u)) { // ∂²/∂μ∂σ
509 let diff = x - mu;
510 d2_log_p = 2.0 * diff / (sigma_sq * sigma);
511 }
512
513 fisher_element += -d2_log_p; // Fisher = -E[Hessian of log-likelihood]
514 }
515
516 fisher_matrix[param_i * n_params + param_j] = fisher_element / f32(n_data);
517}
518"#;
519
520const KL_DIVERGENCE_BATCH: &str = r#"
522@group(0) @binding(0) var<storage, read> distribution_p: array<f32>;
523@group(0) @binding(1) var<storage, read> distribution_q: array<f32>;
524@group(0) @binding(2) var<storage, read_write> kl_divergences: array<f32>;
525@group(0) @binding(3) var<storage, read> batch_info: array<u32>; // [batch_size, dist_size]
526
527@compute @workgroup_size(256)
528fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
529 let batch_idx = global_id.x;
530 let batch_size = batch_info[0];
531 let dist_size = batch_info[1];
532
533 if (batch_idx >= batch_size) {
534 return;
535 }
536
537 // KL divergence: D_KL(P||Q) = Σ P(x) log(P(x)/Q(x))
538 var kl_div = 0.0;
539
540 for (var i = 0u; i < dist_size; i = i + 1u) {
541 let p_i = distribution_p[batch_idx * dist_size + i];
542 let q_i = distribution_q[batch_idx * dist_size + i];
543
544 if (p_i > 1e-10 && q_i > 1e-10) { // Avoid log(0)
545 kl_div += p_i * log(p_i / q_i);
546 }
547 }
548
549 kl_divergences[batch_idx] = kl_div;
550}
551"#;
552
553const CA_EVOLUTION: &str = r#"
559@group(0) @binding(0) var<storage, read> current_state: array<u32>;
560@group(0) @binding(1) var<storage, read_write> next_state: array<u32>;
561@group(0) @binding(2) var<storage, read> rules: array<u32>;
562@group(0) @binding(3) var<storage, read> dimensions: array<u32>; // [width, height]
563
564@compute @workgroup_size(16, 16)
565fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
566 let x = global_id.x;
567 let y = global_id.y;
568
569 let width = dimensions[0];
570 let height = dimensions[1];
571
572 if (x >= width || y >= height) {
573 return;
574 }
575
576 let idx = y * width + x;
577 let current_cell = current_state[idx];
578
579 // Count alive neighbors (Moore neighborhood)
580 var alive_neighbors = 0u;
581
582 for (var dy = 0u; dy < 3u; dy = dy + 1u) {
583 for (var dx = 0u; dx < 3u; dx = dx + 1u) {
584 if (dx == 1u && dy == 1u) { continue; } // Skip center cell
585
586 let nx = (x + dx + width - 1u) % width; // Wrap around
587 let ny = (y + dy + height - 1u) % height;
588 let neighbor_idx = ny * width + nx;
589
590 if (current_state[neighbor_idx] == 1u) {
591 alive_neighbors = alive_neighbors + 1u;
592 }
593 }
594 }
595
596 // Conway's Game of Life rules (can be customized via rules buffer)
597 var new_state = 0u;
598
599 if (current_cell == 1u) { // Currently alive
600 if (alive_neighbors == 2u || alive_neighbors == 3u) {
601 new_state = 1u; // Survive
602 }
603 } else { // Currently dead
604 if (alive_neighbors == 3u) {
605 new_state = 1u; // Birth
606 }
607 }
608
609 next_state[idx] = new_state;
610}
611"#;
612
613const CA_SELF_ASSEMBLY: &str = r#"
615@group(0) @binding(0) var<storage, read> particles: array<f32>; // [x, y, type, energy]
616@group(0) @binding(1) var<storage, read_write> new_particles: array<f32>;
617@group(0) @binding(2) var<storage, read> assembly_rules: array<f32>;
618@group(0) @binding(3) var<storage, read> simulation_params: array<u32>; // [n_particles, grid_size]
619
620@compute @workgroup_size(64)
621fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
622 let particle_idx = global_id.x;
623 let n_particles = simulation_params[0];
624 let grid_size = simulation_params[1];
625
626 if (particle_idx >= n_particles) {
627 return;
628 }
629
630 let base_idx = particle_idx * 4u;
631 let x = particles[base_idx];
632 let y = particles[base_idx + 1u];
633 let particle_type = particles[base_idx + 2u];
634 let energy = particles[base_idx + 3u];
635
636 // Self-assembly based on local interactions
637 var new_x = x;
638 var new_y = y;
639 var new_energy = energy;
640
641 // Calculate forces from nearby particles
642 var force_x = 0.0;
643 var force_y = 0.0;
644
645 for (var other_idx = 0u; other_idx < n_particles; other_idx = other_idx + 1u) {
646 if (other_idx == particle_idx) { continue; }
647
648 let other_base = other_idx * 4u;
649 let other_x = particles[other_base];
650 let other_y = particles[other_base + 1u];
651 let other_type = particles[other_base + 2u];
652
653 let dx = other_x - x;
654 let dy = other_y - y;
655 let distance = sqrt(dx * dx + dy * dy);
656
657 if (distance < 5.0 && distance > 0.1) { // Interaction range
658 let interaction_strength = assembly_rules[u32(particle_type) * 4u + u32(other_type)];
659
660 // Attractive/repulsive force based on particle types
661 let force_magnitude = interaction_strength / (distance * distance);
662 force_x += force_magnitude * dx / distance;
663 force_y += force_magnitude * dy / distance;
664 }
665 }
666
667 // Update position based on forces
668 new_x += force_x * 0.1; // time step
669 new_y += force_y * 0.1;
670
671 // Keep within bounds
672 new_x = clamp(new_x, 0.0, f32(grid_size));
673 new_y = clamp(new_y, 0.0, f32(grid_size));
674
675 // Energy dissipation
676 new_energy = energy * 0.99;
677
678 new_particles[base_idx] = new_x;
679 new_particles[base_idx + 1u] = new_y;
680 new_particles[base_idx + 2u] = particle_type;
681 new_particles[base_idx + 3u] = new_energy;
682}
683"#;
684
685const INTERSECTION_THEORY: &str = r#"
691struct RationalNumber {
692 numerator: i32,
693 denominator: i32,
694}
695
696@group(0) @binding(0) var<storage, read> chow_class_a: array<RationalNumber>;
697@group(0) @binding(1) var<storage, read> chow_class_b: array<RationalNumber>;
698@group(0) @binding(2) var<storage, read_write> intersection_result: array<RationalNumber>;
699@group(0) @binding(3) var<storage, read> geometry_params: array<u32>; // [dimension, degree_a, degree_b]
700
701fn gcd(a: u32, b: u32) -> u32 {
702 if (b == 0u) { return a; }
703 return gcd(b, a % b);
704}
705
706fn add_rationals(a: RationalNumber, b: RationalNumber) -> RationalNumber {
707 let num = a.numerator * b.denominator + b.numerator * a.denominator;
708 let den = a.denominator * b.denominator;
709 let g = gcd(u32(abs(num)), u32(abs(den)));
710
711 return RationalNumber(num / i32(g), den / i32(g));
712}
713
714fn multiply_rationals(a: RationalNumber, b: RationalNumber) -> RationalNumber {
715 let num = a.numerator * b.numerator;
716 let den = a.denominator * b.denominator;
717 let g = gcd(u32(abs(num)), u32(abs(den)));
718
719 return RationalNumber(num / i32(g), den / i32(g));
720}
721
722@compute @workgroup_size(256)
723fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
724 let idx = global_id.x;
725
726 if (idx >= arrayLength(&chow_class_a)) {
727 return;
728 }
729
730 let dimension = geometry_params[0];
731 let degree_a = geometry_params[1];
732 let degree_b = geometry_params[2];
733
734 // Intersection product in Chow ring: A · B
735 // For simplicity, implement as pointwise multiplication for this example
736 let a = chow_class_a[idx];
737 let b = chow_class_b[idx];
738
739 // Check degree compatibility (degree_a + degree_b ≤ dimension)
740 if (degree_a + degree_b <= dimension) {
741 intersection_result[idx] = multiply_rationals(a, b);
742 } else {
743 intersection_result[idx] = RationalNumber(0, 1); // Zero class
744 }
745}
746"#;
747
748const SCHUBERT_CALCULUS: &str = r#"
750@group(0) @binding(0) var<storage, read> partition_a: array<u32>;
751@group(0) @binding(1) var<storage, read> partition_b: array<u32>;
752@group(0) @binding(2) var<storage, read_write> littlewood_coeff: array<u32>;
753@group(0) @binding(3) var<storage, read> grassmann_params: array<u32>; // [n, k]
754
755@compute @workgroup_size(128)
756fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
757 let coeff_idx = global_id.x;
758
759 let n = grassmann_params[0]; // Dimension of ambient space
760 let k = grassmann_params[1]; // Dimension of subspaces
761
762 if (coeff_idx >= arrayLength(&littlewood_coeff)) {
763 return;
764 }
765
766 // Schubert calculus: compute Littlewood-Richardson coefficients
767 // This is a simplified version - full LR coefficients require more complex algorithms
768
769 let max_parts = min(arrayLength(&partition_a), arrayLength(&partition_b));
770 var coefficient = 0u;
771
772 // Simplified intersection number computation
773 for (var i = 0u; i < max_parts; i = i + 1u) {
774 let part_a = partition_a[i];
775 let part_b = partition_b[i];
776
777 // Check compatibility with Grassmannian Gr(k, n)
778 if (part_a <= n - k && part_b <= n - k) {
779 coefficient += part_a * part_b;
780 }
781 }
782
783 littlewood_coeff[coeff_idx] = coefficient;
784}
785"#;
786
787#[cfg(test)]
788mod tests {
789 use super::*;
790
791 #[test]
792 fn test_shader_library_creation() {
793 let library = ShaderLibrary::new();
794 let shaders = library.list_shaders();
795
796 assert!(shaders.contains(&"tropical_matrix_multiply".to_string()));
798 assert!(shaders.contains(&"dual_forward_ad".to_string()));
799 assert!(shaders.contains(&"tropical_dual_clifford".to_string()));
800 assert!(shaders.contains(&"fisher_information".to_string()));
801 assert!(shaders.contains(&"ca_evolution".to_string()));
802 assert!(shaders.contains(&"intersection_theory".to_string()));
803 }
804
805 #[test]
806 fn test_shader_retrieval() {
807 let library = ShaderLibrary::new();
808
809 let shader = library.get_shader("tropical_matrix_multiply");
810 assert!(shader.is_some());
811 assert!(shader.unwrap().contains("@compute"));
812 assert!(shader.unwrap().contains("tropical"));
813 }
814
815 #[test]
816 fn test_shader_constants() {
817 assert_eq!(TROPICAL_SHADERS.len(), 3);
818 assert_eq!(DUAL_SHADERS.len(), 3);
819 assert_eq!(FUSION_SHADERS.len(), 2);
820 }
821}