pub trait SelfAdjointOperator<V, S = SelfAdjoint>: LinearOperator<V, V>where
S: SymmetryProperty,{
// Required method
fn quadratic_form(&self, x: &V) -> Result<f64>;
// Provided methods
fn has_real_spectrum(&self) -> bool { ... }
fn is_positive(&self, x: &V) -> Result<bool> { ... }
fn is_positive_definite(&self, x: &V, tolerance: f64) -> Result<bool> { ... }
}Expand description
A self-adjoint operator (T = T*).
Self-adjoint operators have:
- Real spectrum
- Orthogonal eigenvectors
- Spectral decomposition
§Type Parameters
V- The Hilbert space element typeS- Symmetry phantom marker (should be SelfAdjoint)
Required Methods§
Sourcefn quadratic_form(&self, x: &V) -> Result<f64>
fn quadratic_form(&self, x: &V) -> Result<f64>
Compute the quadratic form ⟨Tx, x⟩.
Provided Methods§
Sourcefn has_real_spectrum(&self) -> bool
fn has_real_spectrum(&self) -> bool
Check if all eigenvalues are real (always true for self-adjoint).
Sourcefn is_positive(&self, x: &V) -> Result<bool>
fn is_positive(&self, x: &V) -> Result<bool>
Check if the operator is positive (⟨Tx, x⟩ ≥ 0).