SelfAdjointOperator

Trait SelfAdjointOperator 

Source
pub trait SelfAdjointOperator<V, S = SelfAdjoint>: LinearOperator<V, V>{
    // Required method
    fn quadratic_form(&self, x: &V) -> Result<f64>;

    // Provided methods
    fn has_real_spectrum(&self) -> bool { ... }
    fn is_positive(&self, x: &V) -> Result<bool> { ... }
    fn is_positive_definite(&self, x: &V, tolerance: f64) -> Result<bool> { ... }
}
Expand description

A self-adjoint operator (T = T*).

Self-adjoint operators have:

  • Real spectrum
  • Orthogonal eigenvectors
  • Spectral decomposition

§Type Parameters

  • V - The Hilbert space element type
  • S - Symmetry phantom marker (should be SelfAdjoint)

Required Methods§

Source

fn quadratic_form(&self, x: &V) -> Result<f64>

Compute the quadratic form ⟨Tx, x⟩.

Provided Methods§

Source

fn has_real_spectrum(&self) -> bool

Check if all eigenvalues are real (always true for self-adjoint).

Source

fn is_positive(&self, x: &V) -> Result<bool>

Check if the operator is positive (⟨Tx, x⟩ ≥ 0).

Source

fn is_positive_definite(&self, x: &V, tolerance: f64) -> Result<bool>

Check if the operator is positive definite (⟨Tx, x⟩ > 0 for x ≠ 0).

Implementors§