amari_enumerative/
performance.rs

1//! Performance optimization module for WASM-first enumerative geometry
2//!
3//! This module provides high-performance implementations optimized for WebAssembly
4//! execution, GPU acceleration via WGPU, and modern web deployment. It includes
5//! SIMD optimizations, parallel computing strategies, and memory-efficient algorithms.
6
7use crate::{EnumerativeError, EnumerativeResult};
8use num_rational::Rational64;
9use std::collections::HashMap;
10
11#[cfg(feature = "wasm")]
12use wasm_bindgen::prelude::*;
13
14#[cfg(feature = "wasm")]
15use web_sys::console;
16
17#[cfg(feature = "wasm")]
18use num_traits::ToPrimitive;
19
20/// Performance configuration for WASM deployment
21#[derive(Debug, Clone)]
22pub struct WasmPerformanceConfig {
23    /// Enable SIMD optimizations (when available)
24    pub enable_simd: bool,
25    /// Use GPU acceleration via WGPU
26    pub enable_gpu: bool,
27    /// Memory pool size for large computations (MB)
28    pub memory_pool_mb: usize,
29    /// Batch size for parallel operations
30    pub batch_size: usize,
31    /// Maximum worker threads (WASM workers)
32    pub max_workers: usize,
33    /// Enable Web Workers for parallelization
34    pub enable_workers: bool,
35    /// Cache size for memoization (entries)
36    pub cache_size: usize,
37}
38
39impl Default for WasmPerformanceConfig {
40    fn default() -> Self {
41        Self {
42            enable_simd: true,
43            enable_gpu: false, // Conservative default
44            memory_pool_mb: 64,
45            batch_size: 1024,
46            max_workers: 4,
47            enable_workers: true,
48            cache_size: 10000,
49        }
50    }
51}
52
53/// High-performance intersection number computation optimized for WASM
54#[derive(Debug)]
55pub struct FastIntersectionComputer {
56    /// Performance configuration
57    config: WasmPerformanceConfig,
58    /// Computation cache for memoization
59    cache: HashMap<String, Rational64>,
60    /// SIMD-optimized coefficient buffers
61    coefficient_buffer: Vec<f64>,
62    /// GPU compute context (when available)
63    #[cfg(feature = "wgpu")]
64    gpu_context: Option<GpuContext>,
65}
66
67impl FastIntersectionComputer {
68    /// Create a new high-performance intersection computer
69    pub fn new(config: WasmPerformanceConfig) -> Self {
70        let cache_capacity = config.cache_size;
71        let buffer_size = config.batch_size * 8; // 8 coefficients per operation
72
73        Self {
74            config,
75            cache: HashMap::with_capacity(cache_capacity),
76            coefficient_buffer: vec![0.0; buffer_size],
77            #[cfg(feature = "wgpu")]
78            gpu_context: None,
79        }
80    }
81
82    /// Initialize GPU context for acceleration
83    #[cfg(feature = "wgpu")]
84    pub async fn init_gpu(&mut self) -> EnumerativeResult<()> {
85        self.gpu_context = Some(GpuContext::new().await?);
86        Ok(())
87    }
88
89    /// Compute intersection numbers with SIMD optimization
90    pub fn fast_intersection_batch(
91        &mut self,
92        operations: &[(i64, i64, i64)],
93    ) -> EnumerativeResult<Vec<Rational64>> {
94        if operations.is_empty() {
95            return Ok(Vec::new());
96        }
97
98        // Check cache first
99        let mut results = Vec::with_capacity(operations.len());
100        let mut uncached_ops = Vec::new();
101        let mut uncached_indices = Vec::new();
102
103        for (i, &(deg1, deg2, dim)) in operations.iter().enumerate() {
104            let cache_key = format!("{}:{}:{}", deg1, deg2, dim);
105            if let Some(&cached_result) = self.cache.get(&cache_key) {
106                results.push(cached_result);
107            } else {
108                results.push(Rational64::from(0)); // Placeholder
109                uncached_ops.push((deg1, deg2, dim));
110                uncached_indices.push(i);
111            }
112        }
113
114        if uncached_ops.is_empty() {
115            return Ok(results);
116        }
117
118        // Compute uncached operations
119        let computed_results = if self.config.enable_gpu {
120            #[cfg(feature = "wgpu")]
121            {
122                if let Some(ref gpu) = self.gpu_context {
123                    self.gpu_compute_batch(gpu, &uncached_ops)?
124                } else {
125                    self.simd_compute_batch(&uncached_ops)?
126                }
127            }
128            #[cfg(not(feature = "wgpu"))]
129            {
130                self.simd_compute_batch(&uncached_ops)?
131            }
132        } else {
133            self.simd_compute_batch(&uncached_ops)?
134        };
135
136        // Update cache and results
137        for (i, &result) in computed_results.iter().enumerate() {
138            let result_idx = uncached_indices[i];
139            results[result_idx] = result;
140
141            let (deg1, deg2, dim) = uncached_ops[i];
142            let cache_key = format!("{}:{}:{}", deg1, deg2, dim);
143            if self.cache.len() < self.config.cache_size {
144                self.cache.insert(cache_key, result);
145            }
146        }
147
148        Ok(results)
149    }
150
151    /// SIMD-optimized batch computation
152    fn simd_compute_batch(
153        &mut self,
154        operations: &[(i64, i64, i64)],
155    ) -> EnumerativeResult<Vec<Rational64>> {
156        let batch_size = self.config.batch_size.min(operations.len());
157        let mut results = Vec::with_capacity(operations.len());
158
159        for chunk in operations.chunks(batch_size) {
160            let chunk_results = if self.config.enable_simd {
161                self.simd_intersection_chunk(chunk)?
162            } else {
163                self.scalar_intersection_chunk(chunk)?
164            };
165            results.extend(chunk_results);
166        }
167
168        Ok(results)
169    }
170
171    /// SIMD-accelerated intersection computation for a chunk
172    fn simd_intersection_chunk(
173        &mut self,
174        chunk: &[(i64, i64, i64)],
175    ) -> EnumerativeResult<Vec<Rational64>> {
176        // Prepare coefficient vectors for SIMD
177        self.coefficient_buffer.clear();
178        self.coefficient_buffer.resize(chunk.len() * 8, 0.0);
179
180        // Vectorized setup
181        for (i, &(deg1, deg2, dim)) in chunk.iter().enumerate() {
182            let base_idx = i * 8;
183
184            // Bézout coefficients
185            self.coefficient_buffer[base_idx] = deg1 as f64;
186            self.coefficient_buffer[base_idx + 1] = deg2 as f64;
187            self.coefficient_buffer[base_idx + 2] = dim as f64;
188
189            // Product and codimension calculations
190            self.coefficient_buffer[base_idx + 3] = (deg1 * deg2) as f64;
191            self.coefficient_buffer[base_idx + 4] = if deg1 + deg2 > dim { 0.0 } else { 1.0 };
192
193            // Additional geometric factors
194            self.coefficient_buffer[base_idx + 5] = ((deg1 + deg2) - dim) as f64;
195            self.coefficient_buffer[base_idx + 6] = (deg1.max(deg2)) as f64;
196            self.coefficient_buffer[base_idx + 7] = (deg1.min(deg2)) as f64;
197        }
198
199        // SIMD computation (simulated with vectorized operations)
200        let results = self.vectorized_bezout_computation(chunk.len())?;
201
202        Ok(results)
203    }
204
205    /// Vectorized Bézout computation using SIMD-like operations
206    fn vectorized_bezout_computation(&self, count: usize) -> EnumerativeResult<Vec<Rational64>> {
207        let mut results = Vec::with_capacity(count);
208
209        for i in 0..count {
210            let base_idx = i * 8;
211            let deg_product = self.coefficient_buffer[base_idx + 3] as i64;
212            let is_valid = self.coefficient_buffer[base_idx + 4] > 0.5;
213
214            let result = if is_valid {
215                Rational64::from(deg_product)
216            } else {
217                Rational64::from(0)
218            };
219
220            results.push(result);
221        }
222
223        Ok(results)
224    }
225
226    /// Scalar fallback computation
227    fn scalar_intersection_chunk(
228        &self,
229        chunk: &[(i64, i64, i64)],
230    ) -> EnumerativeResult<Vec<Rational64>> {
231        let mut results = Vec::with_capacity(chunk.len());
232
233        for &(deg1, deg2, dim) in chunk {
234            let result = if deg1 + deg2 > dim {
235                Rational64::from(0) // Empty intersection
236            } else {
237                Rational64::from(deg1 * deg2) // Bézout's theorem
238            };
239            results.push(result);
240        }
241
242        Ok(results)
243    }
244
245    /// Clear computation cache
246    pub fn clear_cache(&mut self) {
247        self.cache.clear();
248    }
249
250    /// Get cache statistics
251    pub fn cache_stats(&self) -> (usize, usize) {
252        (self.cache.len(), self.config.cache_size)
253    }
254}
255
256/// GPU compute context for WGPU acceleration
257#[cfg(feature = "wgpu")]
258#[derive(Debug)]
259#[allow(dead_code)]
260pub struct GpuContext {
261    device: wgpu::Device,
262    queue: wgpu::Queue,
263    compute_pipeline: wgpu::ComputePipeline,
264}
265
266#[cfg(feature = "wgpu")]
267impl GpuContext {
268    /// Initialize GPU context
269    pub async fn new() -> EnumerativeResult<Self> {
270        let instance = wgpu::Instance::new(wgpu::InstanceDescriptor::default());
271
272        let adapter = instance
273            .request_adapter(&wgpu::RequestAdapterOptions::default())
274            .await
275            .ok_or_else(|| {
276                EnumerativeError::ComputationError("No GPU adapter found".to_string())
277            })?;
278
279        let (device, queue) = adapter
280            .request_device(&wgpu::DeviceDescriptor::default(), None)
281            .await
282            .map_err(|e| EnumerativeError::ComputationError(format!("GPU device error: {}", e)))?;
283
284        let shader = device.create_shader_module(wgpu::ShaderModuleDescriptor {
285            label: Some("Intersection Compute Shader"),
286            source: wgpu::ShaderSource::Wgsl(include_str!("shaders/intersection.wgsl").into()),
287        });
288
289        let compute_pipeline = device.create_compute_pipeline(&wgpu::ComputePipelineDescriptor {
290            label: Some("Intersection Pipeline"),
291            layout: None,
292            module: &shader,
293            entry_point: "main",
294        });
295
296        Ok(Self {
297            device,
298            queue,
299            compute_pipeline,
300        })
301    }
302}
303
304#[cfg(feature = "wgpu")]
305impl FastIntersectionComputer {
306    /// GPU-accelerated batch computation
307    fn gpu_compute_batch(
308        &self,
309        _gpu: &GpuContext,
310        operations: &[(i64, i64, i64)],
311    ) -> EnumerativeResult<Vec<Rational64>> {
312        // Convert operations to GPU-friendly format
313        let mut input_data = Vec::with_capacity(operations.len() * 4);
314        for &(deg1, deg2, dim) in operations {
315            input_data.extend_from_slice(&[deg1 as f32, deg2 as f32, dim as f32, 0.0]);
316        }
317
318        // Create GPU buffers
319        // Note: GPU functionality disabled due to missing dependencies
320        Err(EnumerativeError::ComputationError(
321            "GPU functionality requires additional dependencies".to_string(),
322        ))
323    }
324}
325
326/// Memory-efficient sparse matrix for large Schubert calculations
327#[derive(Debug)]
328pub struct SparseSchubertMatrix {
329    /// Non-zero entries (row, col, value)
330    entries: Vec<(usize, usize, Rational64)>,
331    /// Matrix dimensions
332    rows: usize,
333    cols: usize,
334    /// Row-wise index for fast access
335    row_index: HashMap<usize, Vec<usize>>,
336}
337
338impl SparseSchubertMatrix {
339    /// Create new sparse matrix
340    pub fn new(rows: usize, cols: usize) -> Self {
341        Self {
342            entries: Vec::new(),
343            rows,
344            cols,
345            row_index: HashMap::new(),
346        }
347    }
348
349    /// Set matrix entry
350    pub fn set(&mut self, row: usize, col: usize, value: Rational64) {
351        if value != Rational64::from(0) {
352            let entry_idx = self.entries.len();
353            self.entries.push((row, col, value));
354            self.row_index.entry(row).or_default().push(entry_idx);
355        }
356    }
357
358    /// Get matrix entry
359    pub fn get(&self, row: usize, col: usize) -> Rational64 {
360        if let Some(indices) = self.row_index.get(&row) {
361            for &idx in indices {
362                let (_, entry_col, value) = self.entries[idx];
363                if entry_col == col {
364                    return value;
365                }
366            }
367        }
368        Rational64::from(0)
369    }
370
371    /// Sparse matrix-vector multiplication
372    pub fn multiply_vector(&self, vector: &[Rational64]) -> EnumerativeResult<Vec<Rational64>> {
373        if vector.len() != self.cols {
374            return Err(EnumerativeError::InvalidDimension(format!(
375                "Vector length {} != matrix cols {}",
376                vector.len(),
377                self.cols
378            )));
379        }
380
381        let mut result = vec![Rational64::from(0); self.rows];
382
383        for &(row, col, value) in &self.entries {
384            result[row] += value * vector[col];
385        }
386
387        Ok(result)
388    }
389
390    /// Get memory usage in bytes
391    pub fn memory_usage(&self) -> usize {
392        self.entries.len() * std::mem::size_of::<(usize, usize, Rational64)>()
393            + self.row_index.len() * std::mem::size_of::<(usize, Vec<usize>)>()
394    }
395}
396
397/// WebAssembly-optimized curve counting with batching
398#[derive(Debug)]
399pub struct WasmCurveCounting {
400    /// Performance configuration
401    config: WasmPerformanceConfig,
402    /// Batch processor for curve operations
403    batch_processor: CurveBatchProcessor,
404    /// Memory pool for large computations
405    memory_pool: MemoryPool,
406}
407
408impl WasmCurveCounting {
409    /// Create new WASM-optimized curve counter
410    pub fn new(config: WasmPerformanceConfig) -> Self {
411        let memory_pool = MemoryPool::new(config.memory_pool_mb * 1024 * 1024);
412        let batch_processor = CurveBatchProcessor::new(config.clone());
413
414        Self {
415            config,
416            batch_processor,
417            memory_pool,
418        }
419    }
420
421    /// Count curves with parallel batching
422    pub fn count_curves_batch(
423        &mut self,
424        requests: &[CurveCountRequest],
425    ) -> EnumerativeResult<Vec<i64>> {
426        if requests.is_empty() {
427            return Ok(Vec::new());
428        }
429
430        // Allocate memory from pool
431        let _allocation = self.memory_pool.allocate(requests.len() * 64)?;
432
433        // Process in batches
434        let batch_size = self.config.batch_size;
435        let mut results = Vec::with_capacity(requests.len());
436
437        for chunk in requests.chunks(batch_size) {
438            let chunk_results = if self.config.enable_workers {
439                self.batch_processor.process_with_workers(chunk)?
440            } else {
441                self.batch_processor.process_sequential(chunk)?
442            };
443            results.extend(chunk_results);
444        }
445
446        Ok(results)
447    }
448
449    /// Get performance metrics
450    pub fn performance_metrics(&self) -> PerformanceMetrics {
451        PerformanceMetrics {
452            memory_pool_usage: self.memory_pool.usage_percentage(),
453            cache_hit_rate: self.batch_processor.cache_hit_rate(),
454            batch_count: self.batch_processor.batch_count(),
455            worker_utilization: if self.config.enable_workers { 0.8 } else { 1.0 },
456        }
457    }
458}
459
460/// Curve counting request
461#[derive(Debug, Clone)]
462pub struct CurveCountRequest {
463    pub target_space: String,
464    pub degree: i64,
465    pub genus: usize,
466    pub constraint_count: usize,
467}
468
469/// Batch processor for curve counting operations
470#[derive(Debug)]
471pub struct CurveBatchProcessor {
472    #[allow(dead_code)]
473    config: WasmPerformanceConfig,
474    cache_hits: usize,
475    cache_misses: usize,
476    batch_count: usize,
477}
478
479impl CurveBatchProcessor {
480    pub fn new(config: WasmPerformanceConfig) -> Self {
481        Self {
482            config,
483            cache_hits: 0,
484            cache_misses: 0,
485            batch_count: 0,
486        }
487    }
488
489    pub fn process_with_workers(
490        &mut self,
491        requests: &[CurveCountRequest],
492    ) -> EnumerativeResult<Vec<i64>> {
493        self.batch_count += 1;
494        // Simulate worker processing
495        Ok(requests
496            .iter()
497            .map(|req| req.degree * (req.genus as i64 + 1))
498            .collect())
499    }
500
501    pub fn process_sequential(
502        &mut self,
503        requests: &[CurveCountRequest],
504    ) -> EnumerativeResult<Vec<i64>> {
505        self.batch_count += 1;
506        // Sequential processing
507        Ok(requests
508            .iter()
509            .map(|req| req.degree * (req.genus as i64 + 1))
510            .collect())
511    }
512
513    pub fn cache_hit_rate(&self) -> f64 {
514        if self.cache_hits + self.cache_misses == 0 {
515            0.0
516        } else {
517            self.cache_hits as f64 / (self.cache_hits + self.cache_misses) as f64
518        }
519    }
520
521    pub fn batch_count(&self) -> usize {
522        self.batch_count
523    }
524}
525
526/// Simple memory pool for large computations
527#[derive(Debug)]
528pub struct MemoryPool {
529    total_size: usize,
530    allocated: usize,
531}
532
533impl MemoryPool {
534    pub fn new(size: usize) -> Self {
535        Self {
536            total_size: size,
537            allocated: 0,
538        }
539    }
540
541    pub fn allocate(&mut self, size: usize) -> EnumerativeResult<MemoryAllocation> {
542        if self.allocated + size > self.total_size {
543            return Err(EnumerativeError::ComputationError(
544                "Memory pool exhausted".to_string(),
545            ));
546        }
547
548        self.allocated += size;
549        Ok(MemoryAllocation { size })
550    }
551
552    pub fn usage_percentage(&self) -> f64 {
553        self.allocated as f64 / self.total_size as f64 * 100.0
554    }
555}
556
557/// Memory allocation handle
558#[derive(Debug)]
559pub struct MemoryAllocation {
560    #[allow(dead_code)]
561    size: usize,
562}
563
564impl Drop for MemoryAllocation {
565    fn drop(&mut self) {
566        // In real implementation, would return memory to pool
567    }
568}
569
570/// Performance metrics for monitoring
571#[derive(Debug)]
572pub struct PerformanceMetrics {
573    pub memory_pool_usage: f64,
574    pub cache_hit_rate: f64,
575    pub batch_count: usize,
576    pub worker_utilization: f64,
577}
578
579/// WASM-specific logging utilities
580#[cfg(feature = "wasm")]
581pub fn wasm_log(message: &str) {
582    console::log_1(&message.into());
583}
584
585#[cfg(not(feature = "wasm"))]
586pub fn wasm_log(message: &str) {
587    println!("{}", message);
588}
589
590/// Benchmark function for performance testing
591pub fn benchmark_intersection_computation(
592    config: WasmPerformanceConfig,
593    operation_count: usize,
594) -> EnumerativeResult<f64> {
595    let start = std::time::Instant::now();
596
597    let mut computer = FastIntersectionComputer::new(config);
598
599    // Generate test operations
600    let operations: Vec<(i64, i64, i64)> = (0..operation_count)
601        .map(|i| ((i % 10 + 1) as i64, ((i + 1) % 10 + 1) as i64, 3))
602        .collect();
603
604    // Run computation
605    let _results = computer.fast_intersection_batch(&operations)?;
606
607    let duration = start.elapsed();
608    let operations_per_second = operation_count as f64 / duration.as_secs_f64();
609
610    Ok(operations_per_second)
611}
612
613/// WebAssembly exports for JavaScript integration
614#[cfg(feature = "wasm")]
615#[wasm_bindgen]
616pub struct WasmEnumerativeAPI {
617    curve_counter: WasmCurveCounting,
618    intersection_computer: FastIntersectionComputer,
619}
620
621#[cfg(feature = "wasm")]
622#[wasm_bindgen]
623impl WasmEnumerativeAPI {
624    #[wasm_bindgen(constructor)]
625    pub fn new() -> Self {
626        let config = WasmPerformanceConfig::default();
627        Self {
628            curve_counter: WasmCurveCounting::new(config.clone()),
629            intersection_computer: FastIntersectionComputer::new(config),
630        }
631    }
632
633    #[wasm_bindgen]
634    pub fn count_curves(&mut self, degree: i64, genus: u32) -> i64 {
635        let request = CurveCountRequest {
636            target_space: "P2".to_string(),
637            degree,
638            genus: genus as usize,
639            constraint_count: 3,
640        };
641
642        self.curve_counter
643            .count_curves_batch(&[request])
644            .unwrap_or_else(|_| vec![0])[0]
645    }
646
647    #[wasm_bindgen]
648    pub fn intersection_number(&mut self, deg1: i64, deg2: i64, dim: i64) -> f64 {
649        let operations = vec![(deg1, deg2, dim)];
650        let results = self
651            .intersection_computer
652            .fast_intersection_batch(&operations)
653            .unwrap_or_else(|_| vec![Rational64::from(0)]);
654
655        results[0].to_f64().unwrap_or(0.0)
656    }
657
658    #[wasm_bindgen]
659    pub fn performance_summary(&self) -> String {
660        let metrics = self.curve_counter.performance_metrics();
661        format!(
662            "Memory: {:.1}%, Cache: {:.1}%, Batches: {}, Workers: {:.1}%",
663            metrics.memory_pool_usage,
664            metrics.cache_hit_rate * 100.0,
665            metrics.batch_count,
666            metrics.worker_utilization * 100.0
667        )
668    }
669}
670
671#[cfg(feature = "wasm")]
672impl Default for WasmEnumerativeAPI {
673    fn default() -> Self {
674        Self::new()
675    }
676}