allocator_api2/slice.rs
1use crate::{
2 alloc::{Allocator, Global},
3 vec::Vec,
4};
5
6/// Slice methods that use `Box` and `Vec` from this crate.
7pub trait SliceExt<T> {
8 /// Copies `self` into a new `Vec`.
9 ///
10 /// # Examples
11 ///
12 /// ```
13 /// use allocator_api2::SliceExt;
14 ///
15 /// let s = [10, 40, 30];
16 /// let x = SliceExt::to_vec(&s[..]);
17 /// // Here, `s` and `x` can be modified independently.
18 /// ```
19 #[cfg(not(no_global_oom_handling))]
20 #[inline(always)]
21 fn to_vec(&self) -> Vec<T, Global>
22 where
23 T: Clone,
24 {
25 self.to_vec_in2(Global)
26 }
27
28 /// Copies `self` into a new `Vec`.
29 ///
30 /// # Examples
31 ///
32 /// ```
33 /// use allocator_api2::SliceExt;
34 ///
35 /// let s = [10, 40, 30];
36 /// let x = s.to_vec2();
37 /// // Here, `s` and `x` can be modified independently.
38 /// ```
39 #[cfg(not(no_global_oom_handling))]
40 #[inline(always)]
41 fn to_vec2(&self) -> Vec<T, Global>
42 where
43 T: Clone,
44 {
45 self.to_vec_in2(Global)
46 }
47
48 /// Copies `self` into a new `Vec` with an allocator.
49 ///
50 /// # Examples
51 ///
52 /// ```
53 /// use allocator_api2::{SliceExt, alloc::System};
54 ///
55 /// let s = [10, 40, 30];
56 /// let x = SliceExt::to_vec_in(&s[..], System);
57 /// // Here, `s` and `x` can be modified independently.
58 /// ```
59 #[cfg(not(no_global_oom_handling))]
60 fn to_vec_in<A: Allocator>(&self, alloc: A) -> Vec<T, A>
61 where
62 T: Clone,
63 {
64 Self::to_vec_in2(self, alloc)
65 }
66
67 /// Copies `self` into a new `Vec` with an allocator.
68 ///
69 /// # Examples
70 ///
71 /// ```
72 /// use allocator_api2::{SliceExt, alloc::System};
73 ///
74 /// let s = [10, 40, 30];
75 /// let x = s.to_vec_in2(System);
76 /// // Here, `s` and `x` can be modified independently.
77 /// ```
78 #[cfg(not(no_global_oom_handling))]
79 fn to_vec_in2<A: Allocator>(&self, alloc: A) -> Vec<T, A>
80 where
81 T: Clone;
82
83 /// Creates a vector by copying a slice `n` times.
84 ///
85 /// # Panics
86 ///
87 /// This function will panic if the capacity would overflow.
88 ///
89 /// # Examples
90 ///
91 /// Basic usage:
92 ///
93 /// ```
94 /// use allocator_api2::{SliceExt, vec};
95 ///
96 /// assert_eq!(SliceExt::repeat(&[1, 2][..], 3), vec![1, 2, 1, 2, 1, 2]);
97 /// ```
98 ///
99 /// A panic upon overflow:
100 ///
101 /// ```should_panic
102 /// // this will panic at runtime
103 /// b"0123456789abcdef".repeat(usize::MAX);
104 /// ```
105 fn repeat(&self, n: usize) -> Vec<T, Global>
106 where
107 T: Copy,
108 {
109 Self::repeat2(self, n)
110 }
111
112 /// Creates a vector by copying a slice `n` times.
113 ///
114 /// # Panics
115 ///
116 /// This function will panic if the capacity would overflow.
117 ///
118 /// # Examples
119 ///
120 /// Basic usage:
121 ///
122 /// ```
123 /// use allocator_api2::{SliceExt, vec};
124 ///
125 /// assert_eq!([1, 2].repeat2(3), vec![1, 2, 1, 2, 1, 2]);
126 /// ```
127 ///
128 /// A panic upon overflow:
129 ///
130 /// ```should_panic
131 /// // this will panic at runtime
132 /// b"0123456789abcdef".repeat(usize::MAX);
133 /// ```
134 fn repeat2(&self, n: usize) -> Vec<T, Global>
135 where
136 T: Copy;
137}
138
139impl<T> SliceExt<T> for [T] {
140 #[cfg(not(no_global_oom_handling))]
141 #[inline]
142 fn to_vec_in2<A: Allocator>(&self, alloc: A) -> Vec<T, A>
143 where
144 T: Clone,
145 {
146 struct DropGuard<'a, T, A: Allocator> {
147 vec: &'a mut Vec<T, A>,
148 num_init: usize,
149 }
150 impl<'a, T, A: Allocator> Drop for DropGuard<'a, T, A> {
151 #[inline]
152 fn drop(&mut self) {
153 // SAFETY:
154 // items were marked initialized in the loop below
155 unsafe {
156 self.vec.set_len(self.num_init);
157 }
158 }
159 }
160
161 let mut vec = Vec::with_capacity_in(self.len(), alloc);
162 let mut guard = DropGuard {
163 vec: &mut vec,
164 num_init: 0,
165 };
166 let slots = guard.vec.spare_capacity_mut();
167 // .take(slots.len()) is necessary for LLVM to remove bounds checks
168 // and has better codegen than zip.
169 for (i, b) in self.iter().enumerate().take(slots.len()) {
170 guard.num_init = i;
171 slots[i].write(b.clone());
172 }
173 core::mem::forget(guard);
174 // SAFETY:
175 // the vec was allocated and initialized above to at least this length.
176 unsafe {
177 vec.set_len(self.len());
178 }
179 vec
180 }
181
182 #[cfg(not(no_global_oom_handling))]
183 #[inline]
184 fn repeat2(&self, n: usize) -> Vec<T, Global>
185 where
186 T: Copy,
187 {
188 if n == 0 {
189 return Vec::new();
190 }
191
192 // If `n` is larger than zero, it can be split as
193 // `n = 2^expn + rem (2^expn > rem, expn >= 0, rem >= 0)`.
194 // `2^expn` is the number represented by the leftmost '1' bit of `n`,
195 // and `rem` is the remaining part of `n`.
196
197 // Using `Vec` to access `set_len()`.
198 let capacity = self.len().checked_mul(n).expect("capacity overflow");
199 let mut buf = Vec::with_capacity(capacity);
200
201 // `2^expn` repetition is done by doubling `buf` `expn`-times.
202 buf.extend(self);
203 {
204 let mut m = n >> 1;
205 // If `m > 0`, there are remaining bits up to the leftmost '1'.
206 while m > 0 {
207 // `buf.extend(buf)`:
208 unsafe {
209 core::ptr::copy_nonoverlapping(
210 buf.as_ptr(),
211 (buf.as_mut_ptr() as *mut T).add(buf.len()),
212 buf.len(),
213 );
214 // `buf` has capacity of `self.len() * n`.
215 let buf_len = buf.len();
216 buf.set_len(buf_len * 2);
217 }
218
219 m >>= 1;
220 }
221 }
222
223 // `rem` (`= n - 2^expn`) repetition is done by copying
224 // first `rem` repetitions from `buf` itself.
225 let rem_len = capacity - buf.len(); // `self.len() * rem`
226 if rem_len > 0 {
227 // `buf.extend(buf[0 .. rem_len])`:
228 unsafe {
229 // This is non-overlapping since `2^expn > rem`.
230 core::ptr::copy_nonoverlapping(
231 buf.as_ptr(),
232 (buf.as_mut_ptr() as *mut T).add(buf.len()),
233 rem_len,
234 );
235 // `buf.len() + rem_len` equals to `buf.capacity()` (`= self.len() * n`).
236 buf.set_len(capacity);
237 }
238 }
239 buf
240 }
241}