1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
use crate::{
    alloc::{
        AbortAlloc,
        AllocRef,
        BuildAllocRef,
        CapacityOverflow,
        DeallocRef,
        Global,
        NonZeroLayout,
        ReallocRef,
    },
    boxed::Box,
    collections::CollectionAllocErr,
};
use core::{
    alloc::Layout,
    cmp,
    convert::{TryFrom, TryInto},
    marker::PhantomData,
    mem,
    num::NonZeroUsize,
    ptr,
    ptr::NonNull,
    slice,
};

/// A low-level utility for more ergonomically allocating, reallocating, and deallocating
/// a buffer of memory on the heap without having to worry about all the corner cases
/// involved. This type is excellent for building your own data structures like Vec and `VecDeque`.
/// In particular:
///
/// * Produces `Unique::empty()` on zero-sized types
/// * Produces `Unique::empty()` on zero-length allocations
/// * Catches all overflows in capacity computations (promotes them to "capacity overflow" panics)
/// * Guards against 32-bit systems allocating more than `isize::MAX` bytes
/// * Guards against overflowing your length
/// * Aborts on OOM or calls `handle_alloc_error` as applicable
/// * Avoids freeing `Unique::empty()`
/// * Contains a `ptr::Unique` and thus endows the user with all related benefits
///
/// This type does not in anyway inspect the memory that it manages. When dropped it *will*
/// free its memory, but it *won't* try to Drop its contents. It is up to the user of `RawVec`
/// to handle the actual things *stored* inside of a `RawVec`.
///
/// Note that a `RawVec` always forces its capacity to be `usize::MAX` for zero-sized types.
/// This enables you to use capacity growing logic catch the overflows in your length
/// that might occur with zero-sized types.
///
/// However this means that you need to be careful when round-tripping this type
/// with a `Box<[T]>`: `capacity()` won't yield the len. However `with_capacity`,
/// `shrink_to_fit`, and `from_box` will actually set `RawVec`'s private capacity
/// field. This allows zero-sized types to not be special-cased by consumers of
/// this type.
// Using `NonNull` + `PhantomData` instead of `Unique` to stay on stable as long as possible
pub struct RawVec<T, B: BuildAllocRef = AbortAlloc<Global>> {
    ptr: NonNull<T>,
    capacity: usize,
    build_alloc: B,
    _owned: PhantomData<T>,
}

impl<T> RawVec<T> {
    /// HACK(Centril): This exists because `#[unstable]` `const fn`s needn't conform
    /// to `min_const_fn` and so they cannot be called in `min_const_fn`s either.
    ///
    /// If you change `RawVec<T>::new` or dependencies, please take care to not
    /// introduce anything that would truly violate `min_const_fn`.
    ///
    /// NOTE: We could avoid this hack and check conformance with some
    /// `#[rustc_force_min_const_fn]` attribute which requires conformance
    /// with `min_const_fn` but does not necessarily allow calling it in
    /// `stable(...) const fn` / user code not enabling `foo` when
    /// `#[rustc_const_unstable(feature = "foo", ..)]` is present.
    pub const NEW: Self = Self::new();

    /// Creates the biggest possible `RawVec` (on the system heap)
    /// without allocating. If `T` has positive size, then this makes a
    /// `RawVec` with capacity `0`. If `T` is zero-sized, then it makes a
    /// `RawVec` with capacity `usize::MAX`. Useful for implementing
    /// delayed allocation.
    #[must_use]
    pub const fn new() -> Self {
        // FIXME(Centril): Reintegrate this with `fn new_in` when we can.

        // `!0` is `usize::MAX`. This branch should be stripped at compile time.
        // FIXME(mark-i-m): use this line when `if`s are allowed in `const`:
        // let cap = if mem::size_of::<T>() == 0 { !0 } else { 0 };

        // `Unique::empty()` doubles as "unallocated" and "zero-sized allocation".
        Self {
            ptr: NonNull::dangling(),
            // FIXME(mark-i-m): use `cap` when ifs are allowed in const
            capacity: [0, !0][(mem::size_of::<T>() == 0) as usize],
            build_alloc: AbortAlloc(Global),
            _owned: PhantomData,
        }
    }

    /// Creates a `RawVec` (on the system heap) with exactly the
    /// capacity and alignment requirements for a `[T; capacity]`. This is
    /// equivalent to calling `RawVec::new` when `capacity` is `0` or `T` is
    /// zero-sized. Note that if `T` is zero-sized this means you will
    /// *not* get a `RawVec` with the requested capacity.
    ///
    /// # Panics
    ///
    /// * if the requested capacity exceeds `usize::MAX` bytes.
    /// * on 32-bit platforms if the requested capacity exceeds `isize::MAX` bytes.
    ///
    /// # Aborts
    ///
    /// * on OOM
    #[inline]
    #[must_use]
    pub fn with_capacity(capacity: usize) -> Self {
        Self::with_capacity_in(capacity, AbortAlloc(Global))
    }

    /// Like `with_capacity`, but guarantees the buffer is zeroed.
    #[inline]
    #[must_use]
    pub fn with_capacity_zeroed(capacity: usize) -> Self {
        Self::with_capacity_zeroed_in(capacity, AbortAlloc(Global))
    }

    /// Reconstitutes a `RawVec` from a pointer, and capacity.
    ///
    /// # Safety
    ///
    /// The ptr must be allocated (via the default allocator `Global`), and with the
    /// given capacity. The capacity cannot exceed `isize::MAX` (only a concern on 32-bit systems).
    /// If the ptr and capacity come from a `RawVec` created with `Global`, then this is guaranteed.
    #[inline]
    pub unsafe fn from_raw_parts(ptr: *mut T, capacity: usize) -> Self {
        Self::from_raw_parts_in(ptr, capacity, AbortAlloc(Global))
    }
}

impl<T, B: BuildAllocRef> RawVec<T, B> {
    /// Like `new` but parameterized over the choice of allocator for the returned `RawVec`.
    pub fn new_in(mut a: B::Ref) -> Self {
        let capacity = if mem::size_of::<T>() == 0 { !0 } else { 0 };
        Self {
            ptr: NonNull::dangling(),
            capacity,
            build_alloc: a.get_build_alloc(),
            _owned: PhantomData,
        }
    }

    #[inline]
    /// Like `with_capacity` but parameterized over the choice of allocator for the returned
    /// `RawVec`.
    ///
    /// # Panics
    ///
    /// * `CapacityOverflow` if the requested capacity exceeds `usize::MAX` bytes.
    /// * `CapacityOverflow` on 32-bit platforms if the requested capacity exceeds `isize::MAX` bytes.
    pub fn with_capacity_in(capacity: usize, a: B::Ref) -> Self
    where
        B::Ref: AllocRef<Error = crate::Never>,
    {
        match Self::try_with_capacity_in(capacity, a) {
            Ok(vec) => vec,
            Err(CollectionAllocErr::CapacityOverflow) => capacity_overflow(),
            Err(CollectionAllocErr::AllocError { .. }) => unreachable!("Infallible allocation"),
        }
    }

    #[inline]
    /// Like `with_capacity` but parameterized over the choice of allocator for the returned
    /// `RawVec`.
    ///
    /// # Errors
    ///
    /// * `CapacityOverflow` if the requested capacity exceeds `usize::MAX` bytes.
    /// * `CapacityOverflow` on 32-bit platforms if the requested capacity exceeds `isize::MAX` bytes.
    /// * `AllocError` on OOM
    pub fn try_with_capacity_in(capacity: usize, a: B::Ref) -> Result<Self, CollectionAllocErr<B>>
    where
        B::Ref: AllocRef,
    {
        Self::allocate_in(capacity, false, a)
    }

    #[inline]
    /// Like `with_capacity_zeroed` but parameterized over the choice of allocator for the returned
    /// `RawVec`.
    ///
    /// # Panics
    ///
    /// * `CapacityOverflow` if the requested capacity exceeds `usize::MAX` bytes.
    /// * `CapacityOverflow` on 32-bit platforms if the requested capacity exceeds `isize::MAX` bytes.
    pub fn with_capacity_zeroed_in(capacity: usize, a: B::Ref) -> Self
    where
        B::Ref: AllocRef<Error = crate::Never>,
    {
        match Self::try_with_capacity_zeroed_in(capacity, a) {
            Ok(vec) => vec,
            Err(CollectionAllocErr::CapacityOverflow) => capacity_overflow(),
            Err(CollectionAllocErr::AllocError { .. }) => unreachable!("Infallible allocation"),
        }
    }

    #[inline]
    /// Like `with_capacity_zeroed` but parameterized over the choice of allocator for the returned
    /// `RawVec`.
    ///
    /// # Errors
    ///
    /// * `CapacityOverflow` if the requested capacity exceeds `usize::MAX` bytes.
    /// * `CapacityOverflow` on 32-bit platforms if the requested capacity exceeds `isize::MAX` bytes.
    /// * `AllocError` on OOM
    pub fn try_with_capacity_zeroed_in(
        capacity: usize,
        a: B::Ref,
    ) -> Result<Self, CollectionAllocErr<B>>
    where
        B::Ref: AllocRef,
    {
        Self::allocate_in(capacity, true, a)
    }

    fn allocate_in(
        capacity: usize,
        zeroed: bool,
        mut alloc: B::Ref,
    ) -> Result<Self, CollectionAllocErr<B>>
    where
        B::Ref: AllocRef,
    {
        let elem_size = mem::size_of::<T>();

        let alloc_size = capacity
            .checked_mul(elem_size)
            .ok_or(CollectionAllocErr::CapacityOverflow)?;

        // handles ZSTs and `capacity = 0` alike
        let ptr = if alloc_size == 0 {
            NonNull::<T>::dangling()
        } else {
            let layout = alloc_guard(alloc_size, mem::align_of::<T>())?;
            let result = if zeroed {
                alloc.alloc_zeroed(layout)
            } else {
                alloc.alloc(layout)
            };
            result
                .map_err(|inner| CollectionAllocErr::AllocError { layout, inner })?
                .cast()
        };

        Ok(Self {
            ptr,
            capacity,
            build_alloc: alloc.get_build_alloc(),
            _owned: PhantomData,
        })
    }

    /// Reconstitutes a `RawVec` from a pointer, capacity, and allocator.
    ///
    /// # Safety
    ///
    /// * The ptr must be allocated via `build_alloc`, and with the given capacity.
    /// * The capacity cannot exceed `isize::MAX` (only a concern on 32-bit systems).
    pub unsafe fn from_raw_parts_in(ptr: *mut T, capacity: usize, build_alloc: B) -> Self {
        debug_assert!(!ptr.is_null());
        Self {
            ptr: NonNull::new_unchecked(ptr),
            capacity,
            build_alloc,
            _owned: PhantomData,
        }
    }

    /// Gets a raw pointer to the start of the allocation. Note that this is
    /// `Unique::empty()` if `capacity = 0` or `T` is zero-sized. In the former case, you must
    /// be careful.
    pub fn ptr(&self) -> *mut T {
        self.ptr.as_ptr()
    }

    /// Gets the capacity of the allocation.
    ///
    /// This will always be `usize::MAX` if `T` is zero-sized.
    #[inline(always)]
    pub fn capacity(&self) -> usize {
        if mem::size_of::<T>() == 0 {
            !0
        } else {
            self.capacity
        }
    }

    /// Returns a shared reference to the allocator builder backing this `RawVec`.
    pub fn build_alloc(&self) -> &B {
        &self.build_alloc
    }

    /// Returns a mutable reference to the allocator builder backing this `RawVec`.
    pub fn build_alloc_mut(&mut self) -> &mut B {
        &mut self.build_alloc
    }

    /// Returns the allocator used by this `RawVec` and the used layout, if any.
    /// The layout is `None` if the capacity of this `RawVec` is `0` or if `T` is a zero sized type.
    pub fn alloc_ref(&mut self) -> (B::Ref, Option<NonZeroLayout>) {
        let size = mem::size_of::<T>() * self.capacity;
        unsafe {
            let layout = Layout::from_size_align_unchecked(size, mem::align_of::<T>())
                .try_into()
                .ok();
            let ptr = self.ptr.cast();
            let alloc = self.build_alloc_mut().build_alloc_ref(ptr, layout);
            (alloc, layout)
        }
    }

    /// Converts the entire buffer into `Box<[mem::MaybeUninit<T>]>`.
    ///
    /// Note that this will correctly reconstitute any `cap` changes
    /// that may have been performed. (see description of type for details)
    pub fn into_box(self) -> Box<[mem::MaybeUninit<T>], B> {
        let ptr = self.ptr() as *mut mem::MaybeUninit<T>;
        unsafe {
            let slice = slice::from_raw_parts_mut(ptr, self.capacity);
            let builder = ptr::read(&self.build_alloc);
            let output = Box::from_raw_in(slice, builder);
            mem::forget(self);
            output
        }
    }

    /// Calculates the buffer's new size given that it'll hold `used_capacity +
    /// needed_extra_capacity` elements. This logic is used in amortized reserve methods.
    /// Returns `(new_capacity, new_alloc_size)`.
    fn amortized_new_size(
        &self,
        used_capacity: usize,
        needed_extra_capacity: usize,
    ) -> Result<usize, CapacityOverflow> {
        // Nothing we can really do about these checks :(
        let required_cap = used_capacity
            .checked_add(needed_extra_capacity)
            .ok_or(CapacityOverflow)?;
        // Cannot overflow, because `cap <= isize::MAX`, and type of `cap` is `usize`.
        let double_cap = self.capacity * 2;
        // `double_cap` guarantees exponential growth.
        Ok(cmp::max(double_cap, required_cap))
    }

    /// Doubles the size of the type's backing allocation. This is common enough
    /// to want to do that it's easiest to just have a dedicated method. Slightly
    /// more efficient logic can be provided for this than the general case.
    ///
    /// This function is ideal for when pushing elements one-at-a-time because
    /// you don't need to incur the costs of the more general computations
    /// reserve needs to do to guard against overflow. You do however need to
    /// manually check if your `len == capacity`.
    ///
    /// # Panics
    ///
    /// * Panics if `T` is zero-sized on the assumption that you managed to exhaust
    ///   all `usize::MAX` slots in your imaginary buffer.
    /// * Panics on 32-bit platforms if the requested capacity exceeds
    ///   `isize::MAX` bytes.
    ///
    /// # Aborts
    ///
    /// Aborts on OOM
    ///
    /// # Examples
    ///
    /// ```
    /// # use core::ptr;
    /// # use alloc_wg::raw_vec::RawVec;
    /// struct MyVec<T> {
    ///     buf: RawVec<T>,
    ///     len: usize,
    /// }
    ///
    /// impl<T> MyVec<T> {
    ///     pub fn push(&mut self, elem: T) {
    ///         if self.len == self.buf.capacity() {
    ///             self.buf.double();
    ///         }
    ///         // double would have aborted or panicked if the len exceeded
    ///         // `isize::MAX` so this is safe to do unchecked now.
    ///         unsafe {
    ///             ptr::write(self.buf.ptr().add(self.len), elem);
    ///         }
    ///         self.len += 1;
    ///     }
    /// }
    /// # let mut vec = MyVec { buf: RawVec::new(), len: 0 };
    /// # vec.push(1);
    /// ```
    pub fn double(&mut self)
    where
        B::Ref: ReallocRef<Error = crate::Never>,
    {
        match self.try_double() {
            Ok(_) => (),
            Err(CollectionAllocErr::CapacityOverflow) => capacity_overflow(),
            Err(CollectionAllocErr::AllocError { .. }) => unreachable!("Infallible allocation"),
        }
    }

    /// The same as `double`, but returns on errors instead of panicking.
    #[inline(never)]
    #[cold]
    pub fn try_double(&mut self) -> Result<(), CollectionAllocErr<B>>
    where
        B::Ref: ReallocRef,
    {
        unsafe {
            let elem_size = mem::size_of::<T>();

            // Since we set the capacity to `usize::MAX` when `elem_size` is
            // 0, getting to here necessarily means the `RawVec` is overfull.
            if elem_size == 0 {
                return Err(CollectionAllocErr::CapacityOverflow);
            }

            let (mut alloc, old_layout) = self.alloc_ref();
            let (new_cap, ptr) = if let Some(old_layout) = old_layout {
                // Since we guarantee that we never allocate more than
                // `isize::MAX` bytes, `elem_size * self.cap <= isize::MAX` as
                // a precondition, so this can't overflow. Additionally the
                // alignment will never be too large as to "not be
                // satisfiable", so `Layout::from_size_align` will always
                // return `Some`.
                //
                // TL;DR, we bypass runtime checks due to dynamic assertions
                // in this module, allowing us to use
                // `from_size_align_unchecked`.
                let new_cap = 2 * self.capacity;
                let new_layout = alloc_guard(new_cap * elem_size, mem::align_of::<T>())?;
                let ptr = alloc
                    .realloc(self.ptr.cast(), old_layout, new_layout)
                    .map_err(|inner| CollectionAllocErr::AllocError {
                        inner,
                        layout: new_layout,
                    })?;
                (new_cap, ptr.cast())
            } else {
                // Skip to 4 because tiny `Vec`'s are dumb; but not if that
                // would cause overflow.
                let new_cap = NonZeroUsize::new_unchecked(if elem_size > (!0) / 8 { 1 } else { 4 });
                let new_layout = NonZeroLayout::array::<T>(new_cap)?;
                let ptr =
                    alloc
                        .alloc(new_layout)
                        .map_err(|inner| CollectionAllocErr::AllocError {
                            inner,
                            layout: new_layout,
                        })?;
                (new_cap.get(), ptr.cast())
            };

            self.ptr = ptr;
            self.capacity = new_cap;
            Ok(())
        }
    }

    /// Attempts to double the size of the type's backing allocation in place. This is common
    /// enough to want to do that it's easiest to just have a dedicated method. Slightly
    /// more efficient logic can be provided for this than the general case.
    ///
    /// Returns `true` if the reallocation attempt has succeeded.
    ///
    /// # Panics
    ///
    /// * Panics if `T` is zero-sized on the assumption that you managed to exhaust
    ///   all `usize::MAX` slots in your imaginary buffer.
    /// * Panics on 32-bit platforms if the requested capacity exceeds
    ///   `isize::MAX` bytes.
    pub fn double_in_place(&mut self) -> bool
    where
        B::Ref: AllocRef,
    {
        if let Ok(success) = self.try_double_in_place() {
            success
        } else {
            capacity_overflow()
        }
    }

    /// The same as `double_in_place`, but returns on errors instead of panicking.
    #[inline(never)]
    #[cold]
    pub fn try_double_in_place(&mut self) -> Result<bool, CapacityOverflow>
    where
        B::Ref: AllocRef,
    {
        unsafe {
            let elem_size = mem::size_of::<T>();

            // Since we set the capacity to `usize::MAX` when `elem_size` is
            // 0, getting to here necessarily means the `RawVec` is overfull.
            if elem_size == 0 {
                return Err(CapacityOverflow);
            }

            let (mut alloc, old_layout) = if let (alloc, Some(layout)) = self.alloc_ref() {
                (alloc, layout)
            } else {
                return Ok(false); // nothing to double
            };

            // Since we guarantee that we never allocate more than `isize::MAX`
            // bytes, `elem_size * self.cap <= isize::MAX` as a precondition, so
            // this can't overflow.
            //
            // Similarly to with `double` above, we can go straight to
            // `Layout::from_size_align_unchecked` as we know this won't
            // overflow and the alignment is sufficiently small.
            let new_cap = 2 * self.capacity;
            let new_layout = alloc_guard(new_cap * elem_size, mem::align_of::<T>())?;
            debug_assert_eq!(old_layout.align(), new_layout.align());
            Ok(alloc.grow_in_place(self.ptr.cast(), old_layout, new_layout.size()))
        }
    }

    /// Ensures that the buffer contains at least enough space to hold
    /// `used_capacity + needed_extra_capacity` elements. If it doesn't already have enough
    /// capacity, will reallocate enough space plus comfortable slack space to get amortized `O(1)`
    /// behavior. Will limit this behavior if it would needlessly cause itself to panic.
    ///
    /// If `used_capacity` exceeds `self.capacity()`, this may fail to actually allocate the
    /// requested space. This is not really unsafe, but the unsafe code *you* write that relies on
    /// the behavior of this function may break.
    ///
    /// This is ideal for implementing a bulk-push operation like `extend`.
    ///
    /// # Panics
    ///
    /// * if the requested capacity exceeds `usize::MAX` bytes.
    /// * on 32-bit platforms if the requested capacity exceeds `isize::MAX` bytes.
    ///
    /// # Examples
    ///
    /// ```
    /// # use alloc_wg::raw_vec::RawVec;
    /// # use core::ptr;
    /// struct MyVec<T> {
    ///     buf: RawVec<T>,
    ///     len: usize,
    /// }
    ///
    /// impl<T: Clone> MyVec<T> {
    ///     pub fn push_all(&mut self, elems: &[T]) {
    ///         self.buf.reserve(self.len, elems.len());
    ///         // reserve would have aborted or panicked if the len exceeded
    ///         // `isize::MAX` so this is safe to do unchecked now.
    ///         for x in elems {
    ///             unsafe {
    ///                 ptr::write(self.buf.ptr().add(self.len), x.clone());
    ///             }
    ///             self.len += 1;
    ///         }
    ///     }
    /// }
    /// # let mut vector = MyVec { buf: RawVec::new(), len: 0 };
    /// # vector.push_all(&[1, 3, 5, 7, 9]);
    /// ```
    pub fn reserve(&mut self, used_capacity: usize, needed_extra_capacity: usize)
    where
        B::Ref: ReallocRef<Error = crate::Never>,
    {
        match self.try_reserve(used_capacity, needed_extra_capacity) {
            Ok(vec) => vec,
            Err(CollectionAllocErr::CapacityOverflow) => capacity_overflow(),
            Err(CollectionAllocErr::AllocError { .. }) => unreachable!("Infallible allocation"),
        }
    }

    /// The same as `reserve`, but returns on errors instead of panicking.
    pub fn try_reserve(
        &mut self,
        used_capacity: usize,
        needed_extra_capacity: usize,
    ) -> Result<(), CollectionAllocErr<B>>
    where
        B::Ref: ReallocRef,
    {
        self.reserve_internal(
            used_capacity,
            needed_extra_capacity,
            ReserveStrategy::Amortized,
        )
    }

    /// Ensures that the buffer contains at least enough space to hold
    /// `used_capacity + needed_extra_capacity` elements. If it doesn't already have
    /// enough capacity, will reallocate in place enough space plus comfortable slack
    /// space to get amortized `O(1)` behavior. Will limit this behaviour
    /// if it would needlessly cause itself to panic.
    ///
    /// If `used_capacity` exceeds `self.capacity()`, this may fail to actually allocate
    /// the requested space. This is not really unsafe, but the unsafe
    /// code *you* write that relies on the behavior of this function may break.
    ///
    /// Returns `true` if the reallocation attempt has succeeded.
    ///
    /// # Panics
    ///
    /// * if the requested capacity exceeds `usize::MAX` bytes.
    /// * on 32-bit platforms if the requested capacity exceeds `isize::MAX` bytes.
    pub fn reserve_exact(&mut self, used_capacity: usize, needed_extra_capacity: usize)
    where
        B::Ref: ReallocRef<Error = crate::Never>,
    {
        match self.try_reserve_exact(used_capacity, needed_extra_capacity) {
            Ok(_) => (),
            Err(CollectionAllocErr::CapacityOverflow) => capacity_overflow(),
            Err(CollectionAllocErr::AllocError { .. }) => unreachable!(),
        }
    }

    /// The same as `reserve_exact`, but returns on errors instead of panicking.
    pub fn try_reserve_exact(
        &mut self,
        used_capacity: usize,
        needed_extra_capacity: usize,
    ) -> Result<(), CollectionAllocErr<B>>
    where
        B::Ref: ReallocRef,
    {
        self.reserve_internal(used_capacity, needed_extra_capacity, ReserveStrategy::Exact)
    }

    /// Attempts to ensure that the buffer contains at least enough space to hold
    /// `used_capacity + needed_extra_capacity` elements. If it doesn't already have
    /// enough capacity, will reallocate in place enough space plus comfortable slack
    /// space to get amortized `O(1)` behavior. Will limit this behaviour
    /// if it would needlessly cause itself to panic.
    ///
    /// If `used_capacity` exceeds `self.capacity()`, this may fail to actually allocate
    /// the requested space. This is not really unsafe, but the unsafe
    /// code *you* write that relies on the behavior of this function may break.
    ///
    /// Returns `true` if the reallocation attempt has succeeded.
    ///
    /// # Panics
    ///
    /// * Panics if the requested capacity exceeds `usize::MAX` bytes.
    /// * Panics on 32-bit platforms if the requested capacity exceeds
    ///   `isize::MAX` bytes.
    pub fn reserve_in_place(&mut self, used_capacity: usize, needed_extra_capacity: usize) -> bool
    where
        B::Ref: AllocRef,
    {
        if let Ok(success) = self.try_reserve_in_place(used_capacity, needed_extra_capacity) {
            success
        } else {
            capacity_overflow()
        }
    }

    /// The same as `reserve_in_place`, but returns on errors instead of panicking.
    pub fn try_reserve_in_place(
        &mut self,
        used_capacity: usize,
        needed_extra_capacity: usize,
    ) -> Result<bool, CapacityOverflow>
    where
        B::Ref: AllocRef,
    {
        // NOTE: we don't early branch on ZSTs here because we want this
        // to actually catch "asking for more than usize::MAX" in that case.
        // If we make it past the first branch then we are guaranteed to
        // return.

        // Don't actually need any more capacity. If the current `cap` is 0, we can't
        // reallocate in place.
        // Wrapping in case they give a bad `used_capacity`
        if self.capacity().wrapping_sub(used_capacity) >= needed_extra_capacity {
            return Ok(false);
        }

        let (mut alloc, old_layout) = if let (alloc, Some(layout)) = self.alloc_ref() {
            (alloc, layout)
        } else {
            return Ok(false); // nothing to double
        };

        let new_cap = self.amortized_new_size(used_capacity, needed_extra_capacity)?;
        let new_layout = alloc_guard(new_cap * mem::size_of::<T>(), mem::align_of::<T>())?;
        debug_assert_eq!(new_layout.align(), old_layout.align());

        unsafe {
            // Here, `cap < used_capacity + needed_extra_capacity <= new_cap`
            // (regardless of whether `self.cap - used_capacity` wrapped).
            // Therefore, we can safely call `grow_in_place`.
            // FIXME: may crash and burn on over-reserve
            if alloc.grow_in_place(self.ptr.cast(), old_layout, new_layout.size()) {
                self.capacity = new_cap;
                Ok(true)
            } else {
                Ok(false)
            }
        }
    }

    /// Shrinks the allocation down to the specified amount. If the given amount
    /// is 0, actually completely deallocates.
    ///
    /// # Panics
    ///
    /// Panics if the given amount is *larger* than the current capacity.
    pub fn shrink_to_fit(&mut self, amount: usize)
    where
        B::Ref: ReallocRef<Error = crate::Never>,
    {
        match self.try_shrink_to_fit(amount) {
            Ok(_) => (),
            Err(CollectionAllocErr::CapacityOverflow) => {
                panic!("Tried to shrink to a larger capacity")
            }
            Err(CollectionAllocErr::AllocError { .. }) => unreachable!(),
        }
    }

    /// The same as `shrink_to_fit`, but returns on errors instead of panicking.
    pub fn try_shrink_to_fit(&mut self, amount: usize) -> Result<(), CollectionAllocErr<B>>
    where
        B::Ref: ReallocRef,
    {
        let elem_size = mem::size_of::<T>();

        // Set the `cap` because they might be about to promote to a `Box<[T]>`
        if elem_size == 0 {
            self.capacity = amount;
            return Ok(());
        }

        // This check is my waterloo; it's the only thing Vec wouldn't have to do.
        if self.capacity < amount {
            return Err(CollectionAllocErr::CapacityOverflow);
        }

        if amount == 0 {
            // We want to create a new zero-length vector within the
            // same allocator.  We use ptr::write to avoid an
            // erroneous attempt to drop the contents, and we use
            // ptr::read to sidestep condition against destructuring
            // types that implement Drop.

            unsafe {
                let build_alloc = ptr::read(self.build_alloc());
                self.dealloc_buffer();
                ptr::write(
                    self,
                    Self::from_raw_parts_in(NonNull::dangling().as_ptr(), 0, build_alloc),
                );
            }
        } else if self.capacity != amount {
            unsafe {
                // We know here that our `amount` is greater than zero. This
                // implies, via the assert above, that capacity is also greater
                // than zero, which means that we've got a current layout that
                // "fits"
                //
                // We also know that `self.cap` is greater than `amount`, and
                // consequently we don't need runtime checks for creating either
                // layout
                let old_size = NonZeroUsize::new_unchecked(elem_size * self.capacity);
                let new_size = NonZeroUsize::new_unchecked(elem_size * amount);
                let align = NonZeroUsize::new_unchecked(mem::align_of::<T>());
                let old_layout = NonZeroLayout::from_size_align_unchecked(old_size, align);
                let new_layout = alloc_guard(new_size.get(), align.get())?;
                let ptr = self.ptr.cast();
                self.ptr = self
                    .build_alloc
                    .build_alloc_ref(ptr, Some(old_layout))
                    .realloc(ptr, old_layout, new_layout)
                    .map_err(|inner| CollectionAllocErr::AllocError {
                        layout: NonZeroLayout::from_size_align_unchecked(new_size, align),
                        inner,
                    })?
                    .cast();
            }
            self.capacity = amount;
        }
        Ok(())
    }

    fn reserve_internal(
        &mut self,
        used_capacity: usize,
        needed_extra_capacity: usize,
        strategy: ReserveStrategy,
    ) -> Result<(), CollectionAllocErr<B>>
    where
        B::Ref: ReallocRef,
    {
        // NOTE: we don't early branch on ZSTs here because we want this
        // to actually catch "asking for more than usize::MAX" in that case.
        // If we make it past the first branch then we are guaranteed to
        // panic.

        // Don't actually need any more capacity.
        // Wrapping in case they gave a bad `used_capacity`.
        if self.capacity().wrapping_sub(used_capacity) >= needed_extra_capacity {
            return Ok(());
        }

        // Nothing we can really do about these checks :(
        let new_cap = match strategy {
            ReserveStrategy::Exact => used_capacity
                .checked_add(needed_extra_capacity)
                .ok_or(CollectionAllocErr::CapacityOverflow)?,
            ReserveStrategy::Amortized => {
                self.amortized_new_size(used_capacity, needed_extra_capacity)?
            }
        };
        let new_cap = unsafe {
            debug_assert_ne!(new_cap, 0);
            NonZeroUsize::new_unchecked(new_cap)
        };
        let new_layout = NonZeroLayout::array::<T>(new_cap)?;

        let _ = alloc_guard(new_layout.size().get(), new_layout.align().get())?;

        let (mut alloc, old_layout) = self.alloc_ref();
        let result = if let Some(layout) = old_layout {
            unsafe { alloc.realloc(self.ptr.cast(), layout, new_layout) }
        } else {
            alloc.alloc(new_layout)
        };

        self.ptr = result
            .map_err(|inner| CollectionAllocErr::AllocError {
                layout: new_layout,
                inner,
            })?
            .cast();
        self.capacity = new_cap.get();

        Ok(())
    }
}

impl<T, B: BuildAllocRef> From<Box<[T], B>> for RawVec<T, B> {
    fn from(slice: Box<[T], B>) -> Self {
        let len = slice.len();
        let (ptr, builder) = Box::into_raw_non_null_alloc(slice);
        Self {
            ptr: ptr.cast(),
            capacity: len,
            build_alloc: builder,
            _owned: PhantomData,
        }
    }
}

// Copy for passing by value without warnings
#[derive(Copy, Clone)]
enum ReserveStrategy {
    Exact,
    Amortized,
}

impl<T, B: BuildAllocRef> RawVec<T, B> {
    /// Frees the memory owned by the `RawVec` *without* trying to Drop its contents.
    pub fn dealloc_buffer(&mut self) {
        if let (mut alloc, Some(layout)) = self.alloc_ref() {
            unsafe { alloc.dealloc(self.ptr.cast(), layout) }
        }
    }
}

#[cfg(feature = "dropck_eyepatch")]
unsafe impl<#[may_dangle] T, B: BuildAllocRef> Drop for RawVec<T, B> {
    /// Frees the memory owned by the `RawVec` *without* trying to Drop its contents.
    fn drop(&mut self) {
        self.dealloc_buffer();
    }
}

#[cfg(not(feature = "dropck_eyepatch"))]
impl<T, B: BuildAllocRef> Drop for RawVec<T, B> {
    /// Frees the memory owned by the `RawVec` *without* trying to Drop its contents.
    fn drop(&mut self) {
        self.dealloc_buffer();
    }
}

// We need to guarantee the following:
// * We don't ever allocate `> isize::MAX` byte-size objects.
// * We don't overflow `usize::MAX` and actually allocate too little.
// * `alloc_size` and `align` is non-zero (only checked in debug builds)
//
// On 64-bit we just need to check for overflow since trying to allocate
// `> isize::MAX` bytes will surely fail. On 32-bit and 16-bit we need to add
// an extra guard for this in case we're running on a platform which can use
// all 4GB in user-space, e.g., PAE or x32.
#[inline]
fn alloc_guard(alloc_size: usize, align: usize) -> Result<NonZeroLayout, CapacityOverflow> {
    if mem::size_of::<usize>() < 8 && isize::try_from(alloc_size).is_err() {
        Err(CapacityOverflow)
    } else {
        debug_assert!(NonZeroLayout::from_size_align(alloc_size, align).is_ok());

        unsafe {
            Ok(NonZeroLayout::from_size_align_unchecked(
                NonZeroUsize::new_unchecked(alloc_size),
                NonZeroUsize::new_unchecked(align),
            ))
        }
    }
}

// One central function responsible for reporting capacity overflows. This'll
// ensure that the code generation related to these panics is minimal as there's
// only one location which panics rather than a bunch throughout the module.
fn capacity_overflow() -> ! {
    panic!("capacity overflow");
}