1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
use crate::{ alloc::{AllocRef, BuildAllocRef, DeallocRef, Global, NonZeroLayout, ReallocRef}, boxed::Box, collections::CollectionAllocErr::{self, AllocError, CapacityOverflow}, }; use core::{cmp, marker::PhantomData, mem, ptr, ptr::NonNull, slice}; /// A low-level utility for more ergonomically allocating, reallocating, and deallocating /// a buffer of memory on the heap without having to worry about all the corner cases /// involved. This type is excellent for building your own data structures like Vec and `VecDeque`. /// In particular: /// /// * Produces `Unique::empty()` on zero-sized types /// * Produces `Unique::empty()` on zero-length allocations /// * Catches all overflows in capacity computations (promotes them to "capacity overflow" panics) /// * Guards against 32-bit systems allocating more than `isize::MAX` bytes /// * Guards against overflowing your length /// * Aborts on OOM or calls `handle_alloc_error` as applicable /// * Avoids freeing `Unique::empty()` /// * Contains a `ptr::Unique` and thus endows the user with all related benefits /// /// This type does not in anyway inspect the memory that it manages. When dropped it *will* /// free its memory, but it *won't* try to Drop its contents. It is up to the user of `RawVec` /// to handle the actual things *stored* inside of a `RawVec`. /// /// Note that a `RawVec` always forces its capacity to be `usize::MAX` for zero-sized types. /// This enables you to use capacity growing logic catch the overflows in your length /// that might occur with zero-sized types. /// /// However this means that you need to be careful when round-tripping this type /// with a `Box<[T]>`: `capacity()` won't yield the len. However `with_capacity`, /// `shrink_to_fit`, and `from_box` will actually set `RawVec`'s private capacity /// field. This allows zero-sized types to not be special-cased by consumers of /// this type. // Using `NonNull` + `PhantomData` instead of `Unique` to stay on stable as long as possible pub struct RawVec<T, B: BuildAllocRef = Global> { ptr: NonNull<T>, capacity: usize, build_alloc: B, _owned: PhantomData<T>, } impl<T> RawVec<T> { /// HACK(Centril): This exists because `#[unstable]` `const fn`s needn't conform /// to `min_const_fn` and so they cannot be called in `min_const_fn`s either. /// /// If you change `RawVec<T>::new` or dependencies, please take care to not /// introduce anything that would truly violate `min_const_fn`. /// /// NOTE: We could avoid this hack and check conformance with some /// `#[rustc_force_min_const_fn]` attribute which requires conformance /// with `min_const_fn` but does not necessarily allow calling it in /// `stable(...) const fn` / user code not enabling `foo` when /// `#[rustc_const_unstable(feature = "foo", ..)]` is present. pub const NEW: Self = Self::new(); /// Creates the biggest possible `RawVec` (on the system heap) /// without allocating. If `T` has positive size, then this makes a /// `RawVec` with capacity `0`. If `T` is zero-sized, then it makes a /// `RawVec` with capacity `usize::MAX`. Useful for implementing /// delayed allocation. pub const fn new() -> Self { // FIXME(Centril): Reintegrate this with `fn new_in` when we can. // `!0` is `usize::MAX`. This branch should be stripped at compile time. // FIXME(mark-i-m): use this line when `if`s are allowed in `const`: // let cap = if mem::size_of::<T>() == 0 { !0 } else { 0 }; // `Unique::empty()` doubles as "unallocated" and "zero-sized allocation". Self { ptr: NonNull::dangling(), // FIXME(mark-i-m): use `cap` when ifs are allowed in const capacity: [0, !0][(mem::size_of::<T>() == 0) as usize], build_alloc: Global, _owned: PhantomData, } } /// Creates a `RawVec` (on the system heap) with exactly the /// capacity and alignment requirements for a `[T; capacity]`. This is /// equivalent to calling `RawVec::new` when `capacity` is `0` or `T` is /// zero-sized. Note that if `T` is zero-sized this means you will /// *not* get a `RawVec` with the requested capacity. /// /// # Errors /// /// * `CapacityOverflow` if the requested capacity exceeds `usize::MAX` bytes. /// * `CapacityOverflow` on 32-bit platforms if the requested capacity exceeds `isize::MAX` bytes. /// * `AllocError` on OOM #[inline] pub fn with_capacity(capacity: usize) -> Result<Self, CollectionAllocErr<Global>> { Self::with_capacity_in(capacity, Global) } /// Like `with_capacity`, but guarantees the buffer is zeroed. #[inline] pub fn with_capacity_zeroed(capacity: usize) -> Result<Self, CollectionAllocErr<Global>> { Self::with_capacity_zeroed_in(capacity, Global) } /// Reconstitutes a RawVec from a pointer, and capacity. /// /// # Safety /// /// The ptr must be allocated (via the default allocator `Global`), and with the /// given capacity. The capacity cannot exceed `isize::MAX` (only a concern on 32-bit systems). /// If the ptr and capacity come from a RawVec created with `Global`, then this is guaranteed. #[inline] pub unsafe fn from_raw_parts(ptr: *mut T, capacity: usize) -> Self { Self::from_raw_parts_in(ptr, capacity, Global) } } impl<T, B: BuildAllocRef> RawVec<T, B> where B::Ref: AllocRef, { /// Like `new` but parameterized over the choice of allocator for the returned `RawVec`. pub fn new_in(mut a: B::Ref) -> Self { let cap = if mem::size_of::<T>() == 0 { !0 } else { 0 }; Self { ptr: NonNull::dangling(), capacity: cap, build_alloc: a.get_build_alloc(), _owned: PhantomData, } } #[inline] /// Like `with_capacity` but parameterized over the choice of allocator for the returned /// `RawVec`. pub fn with_capacity_in(capacity: usize, a: B::Ref) -> Result<Self, CollectionAllocErr<B>> { Self::allocate_in(capacity, false, a) } #[inline] /// Like `with_capacity_zeroed` but parameterized over the choice of allocator for the returned /// `RawVec`. pub fn with_capacity_zeroed_in( capacity: usize, a: B::Ref, ) -> Result<Self, CollectionAllocErr<B>> { Self::allocate_in(capacity, true, a) } fn allocate_in( capacity: usize, zeroed: bool, mut alloc: B::Ref, ) -> Result<Self, CollectionAllocErr<B>> { let elem_size = mem::size_of::<T>(); let alloc_size = capacity.checked_mul(elem_size).ok_or(CapacityOverflow)?; alloc_guard(alloc_size)?; // handles ZSTs and `capacity = 0` alike let ptr = if alloc_size == 0 { NonNull::<T>::dangling() } else { let layout = unsafe { NonZeroLayout::from_size_align_unchecked(alloc_size, mem::align_of::<T>()) }; let result = if zeroed { alloc.alloc_zeroed(layout) } else { alloc.alloc(layout) }; result.map_err(|inner| AllocError { layout, inner })?.cast() }; unsafe { Ok(Self::from_raw_parts_in( ptr.as_ptr(), capacity, alloc.get_build_alloc(), )) } } } impl<T, B: BuildAllocRef> RawVec<T, B> { /// Reconstitutes a `RawVec` from a pointer, capacity, and allocator. /// /// # Safety /// /// The ptr must be allocated (via the given allocator `build_alloc`), and with the given /// capacity. The capacity cannot exceed `isize::MAX` (only a concern on 32-bit systems). /// If the ptr and capacity come from a `RawVec` created via `build_alloc`, then this is /// guaranteed. pub unsafe fn from_raw_parts_in(ptr: *mut T, capacity: usize, build_alloc: B) -> Self { Self { ptr: NonNull::new_unchecked(ptr), capacity, build_alloc, _owned: PhantomData, } } /// Gets a raw pointer to the start of the allocation. Note that this is /// Unique::empty() if `capacity = 0` or T is zero-sized. In the former case, you must /// be careful. pub fn ptr(&self) -> *mut T { self.ptr.as_ptr() } /// Gets the capacity of the allocation. /// /// This will always be `usize::MAX` if `T` is zero-sized. #[inline(always)] pub fn capacity(&self) -> usize { if mem::size_of::<T>() == 0 { !0 } else { self.capacity } } /// Returns a shared reference to the alloc builder. pub fn build_alloc(&self) -> &B { &self.build_alloc } /// Returns a mutable reference to the alloc builder. pub fn build_alloc_mut(&mut self) -> &mut B { &mut self.build_alloc } /// Returns the allocator used by this `RawVec` and the used layout, if any. /// The layout is `None` if the capacity of this `RawVec` is `0` or if `T` is a zero sized type. pub fn alloc_ref(&mut self) -> (B::Ref, Option<NonZeroLayout>) { let size = mem::size_of::<T>() * self.capacity; let layout = if size == 0 { None } else { unsafe { Some(NonZeroLayout::from_size_align_unchecked( size, mem::align_of::<T>(), )) } }; let ptr = self.ptr.cast(); let alloc = unsafe { self.build_alloc_mut().build_alloc_ref(ptr, layout) }; (alloc, layout) } } impl<T, B: BuildAllocRef> From<Box<[T], B>> for RawVec<T, B> { fn from(slice: Box<[T], B>) -> Self { let len = slice.len(); let (ptr, builder) = Box::into_raw_non_null_alloc(slice); Self { ptr: ptr.cast(), capacity: len, build_alloc: builder, _owned: PhantomData, } } } impl<T, B: BuildAllocRef> From<RawVec<T, B>> for Box<[mem::MaybeUninit<T>], B> { fn from(vec: RawVec<T, B>) -> Self { unsafe { let slice: &mut [mem::MaybeUninit<T>] = slice::from_raw_parts_mut(vec.ptr() as _, vec.capacity); let output = Self::from_raw_in(slice, ptr::read(&vec.build_alloc)); mem::forget(vec); output } } } // Copy for passing by value without warnings #[derive(Copy, Clone)] enum ReserveStrategy { Exact, Amortized, } impl<T, B: BuildAllocRef> RawVec<T, B> where B::Ref: ReallocRef, { /// Calculates the buffer's new size given that it'll hold `used_capacity + /// needed_extra_capacity` elements. This logic is used in amortized reserve methods. /// Returns `(new_capacity, new_alloc_size)`. fn amortized_new_size( &self, used_capacity: usize, needed_extra_capacity: usize, ) -> Result<usize, CollectionAllocErr<B>> { // Nothing we can really do about these checks :( let required_cap = used_capacity .checked_add(needed_extra_capacity) .ok_or(CapacityOverflow)?; // Cannot overflow, because `cap <= isize::MAX`, and type of `cap` is `usize`. let double_cap = self.capacity * 2; // `double_cap` guarantees exponential growth. Ok(cmp::max(double_cap, required_cap)) } /// Ensures that the buffer contains at least enough space to hold /// `used_capacity + needed_extra_capacity` elements. If it doesn't already have /// enough capacity, will reallocate enough space plus comfortable slack /// space to get amortized `O(1)` behavior. Will limit this behavior /// if it would needlessly cause itself to panic. /// /// If `used_capacity` exceeds `self.capacity()`, this may fail to actually allocate /// the requested space. This is not really unsafe, but the unsafe /// code *you* write that relies on the behavior of this function may break. /// /// This is ideal for implementing a bulk-push operation like `extend`. /// /// # Errors /// /// * `CapacityOverflow` if the requested capacity exceeds `usize::MAX` bytes. /// * `CapacityOverflow` on 32-bit platforms if the requested capacity exceeds `isize::MAX` bytes. /// * `AllocError` on OOM /// /// # Examples /// /// ``` /// use alloc_wg::{alloc::Global, collections::CollectionAllocErr, raw_vec::RawVec}; /// use core::ptr; /// /// struct MyVec<T> { /// buf: RawVec<T>, /// len: usize, /// } /// /// impl<T: Clone> MyVec<T> { /// pub fn push_all(&mut self, elems: &[T]) -> Result<(), CollectionAllocErr<Global>> { /// self.buf.reserve(self.len, elems.len())?; /// // reserve would have aborted or panicked if the len exceeded /// // `isize::MAX` so this is safe to do unchecked now. /// for x in elems { /// unsafe { /// ptr::write(self.buf.ptr().add(self.len), x.clone()); /// } /// self.len += 1; /// } /// Ok(()) /// } /// } /// # fn main() -> Result<(), CollectionAllocErr<Global>> { /// # let mut vector = MyVec { buf: RawVec::new(), len: 0 }; /// # vector.push_all(&[1, 3, 5, 7, 9])?; /// # Ok(()) /// # } /// ``` pub fn reserve( &mut self, used_capacity: usize, needed_extra_capacity: usize, ) -> Result<(), CollectionAllocErr<B>> { self.reserve_internal( used_capacity, needed_extra_capacity, ReserveStrategy::Amortized, ) } /// Attempts to ensure that the buffer contains at least enough space to hold /// `used_capacity + needed_extra_capacity` elements. If it doesn't already have /// enough capacity, will reallocate in place enough space plus comfortable slack /// space to get amortized `O(1)` behavior. Will limit this behaviour /// if it would needlessly cause itself to panic. /// /// If `used_capacity` exceeds `self.capacity()`, this may fail to actually allocate /// the requested space. This is not really unsafe, but the unsafe /// code *you* write that relies on the behavior of this function may break. /// /// Returns `true` if the reallocation attempt has succeeded. /// /// # Errors /// /// * `CapacityOverflow` if the requested capacity exceeds `usize::MAX` bytes. /// * `CapacityOverflow` on 32-bit platforms if the requested capacity exceeds `isize::MAX` bytes. /// * `AllocError` on OOM pub fn reserve_exact( &mut self, used_capacity: usize, needed_extra_capacity: usize, ) -> Result<(), CollectionAllocErr<B>> { self.reserve_internal(used_capacity, needed_extra_capacity, ReserveStrategy::Exact) } /// Shrinks the allocation down to the specified amount. If the given amount /// is 0, actually completely deallocates. /// /// # Panics /// /// Panics if the given amount is *larger* than the current capacity. /// /// # Errors /// /// * `AllocError` on OOM pub fn shrink_to_fit(&mut self, amount: usize) -> Result<(), CollectionAllocErr<B>> { let elem_size = mem::size_of::<T>(); // Set the `cap` because they might be about to promote to a `Box<[T]>` if elem_size == 0 { self.capacity = amount; return Ok(()); } // This check is my waterloo; it's the only thing Vec wouldn't have to do. assert!( self.capacity >= amount, "Tried to shrink to a larger capacity" ); if amount == 0 { // We want to create a new zero-length vector within the // same allocator. We use ptr::write to avoid an // erroneous attempt to drop the contents, and we use // ptr::read to sidestep condition against destructuring // types that implement Drop. unsafe { let build_alloc = ptr::read(self.build_alloc()); self.dealloc_buffer(); ptr::write( self, Self::from_raw_parts_in(NonNull::dangling().as_ptr(), 0, build_alloc), ); } } else if self.capacity != amount { unsafe { // We know here that our `amount` is greater than zero. This // implies, via the assert above, that capacity is also greater // than zero, which means that we've got a current layout that // "fits" // // We also know that `self.cap` is greater than `amount`, and // consequently we don't need runtime checks for creating either // layout let old_size = elem_size * self.capacity; let new_size = elem_size * amount; let align = mem::align_of::<T>(); let old_layout = NonZeroLayout::from_size_align_unchecked(old_size, align); let ptr = self.ptr.cast(); self.build_alloc .build_alloc_ref(ptr, Some(old_layout)) .realloc(ptr, old_layout, new_size) .map_err(|inner| AllocError { layout: NonZeroLayout::from_size_align_unchecked(new_size, align), inner, })?; } self.capacity = amount; } Ok(()) } fn reserve_internal( &mut self, used_capacity: usize, needed_extra_capacity: usize, strategy: ReserveStrategy, ) -> Result<(), CollectionAllocErr<B>> { unsafe { // NOTE: we don't early branch on ZSTs here because we want this // to actually catch "asking for more than usize::MAX" in that case. // If we make it past the first branch then we are guaranteed to // panic. // Don't actually need any more capacity. // Wrapping in case they gave a bad `used_capacity`. if self.capacity().wrapping_sub(used_capacity) >= needed_extra_capacity { return Ok(()); } // Nothing we can really do about these checks :( let new_cap = match strategy { ReserveStrategy::Exact => used_capacity .checked_add(needed_extra_capacity) .ok_or(CapacityOverflow)?, ReserveStrategy::Amortized => { self.amortized_new_size(used_capacity, needed_extra_capacity)? } }; let new_layout = NonZeroLayout::array::<T>(new_cap)?; alloc_guard(new_layout.size())?; let result = match self.alloc_ref() { (mut alloc, Some(layout)) => { debug_assert_eq!(new_layout.align(), layout.align()); alloc.realloc(self.ptr.cast(), layout, new_layout.size()) } (mut alloc, None) => alloc.alloc(new_layout), }; self.ptr = result .map_err(|inner| AllocError { layout: new_layout, inner, })? .cast(); self.capacity = new_cap; Ok(()) } } } impl<T, B: BuildAllocRef> RawVec<T, B> { /// Frees the memory owned by the RawVec *without* trying to Drop its contents. pub unsafe fn dealloc_buffer(&mut self) { if let (mut alloc, Some(layout)) = self.alloc_ref() { alloc.dealloc(self.ptr.cast(), layout) } } } #[cfg(feature = "dropck_eyepatch")] unsafe impl<#[may_dangle] T, B: BuildAllocRef> Drop for RawVec<T, B> { /// Frees the memory owned by the RawVec *without* trying to Drop its contents. fn drop(&mut self) { unsafe { self.dealloc_buffer(); } } } #[cfg(not(feature = "dropck_eyepatch"))] impl<T, B: BuildAllocRef> Drop for RawVec<T, B> { /// Frees the memory owned by the RawVec *without* trying to Drop its contents. fn drop(&mut self) { unsafe { self.dealloc_buffer(); } } } // We need to guarantee the following: // * We don't ever allocate `> isize::MAX` byte-size objects // * We don't overflow `usize::MAX` and actually allocate too little // // On 64-bit we just need to check for overflow since trying to allocate // `> isize::MAX` bytes will surely fail. On 32-bit and 16-bit we need to add // an extra guard for this in case we're running on a platform which can use // all 4GB in user-space. e.g., PAE or x32 #[inline] #[allow(clippy::cast_sign_loss)] fn alloc_guard<B: BuildAllocRef>(alloc_size: usize) -> Result<(), CollectionAllocErr<B>> where B::Ref: AllocRef, { if mem::size_of::<usize>() < 8 && alloc_size > isize::max_value() as usize { Err(CapacityOverflow) } else { Ok(()) } }