1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
//! Allan-tools 
//! 
//! This lib is a portage / equivalent package to
//! Allantools (python) library to compute Allan & related
//! statistics over some data.
//!
//! This lib only implements basic (biased) 
//! error bar estimates at the moment.
//!
//! url: <https://github.com/gwbres/allan-tools>  
//! url: <https://github.com/aewallin/allantools>

mod tau;
mod noise;
mod utils;

use thiserror::Error;

/// describes error related to deviation computations
#[derive(Error, Debug)]
pub enum Error {
    #[error("`tau` axis error")]
    TauAxisEror(#[from] tau::Error), 
    #[error("non feasible deviation - missing some more samples")]
    NotEnoughSamplesError, 
}

#[derive(Clone, Copy)]
/// describes all known computations
pub enum Deviation {
    Allan,    // `allan` deviation
    ModifiedAdev, // `modified allan` deviation
    TimeDeviation, // `tdev`
}

/// Computes desired deviation of given input data 
/// for given tau values.  
/// data: input vector   
/// taus: desired `tau` offsets (s)   
/// sampling_rate: acquisition rate (Hz)   
/// is_fractionnal: true if input vector is made of fractionnal (n.a) data
/// overlapping: true if using overlapping interval (increase confidence / errbar narrows down faster)
/// returns: (adev, err) : deviations & error bars for each feasible `tau`
pub fn deviation (data: Vec<f64>, taus: Vec<f64>, deviation: Deviation, is_fractionnal: bool, overlapping: bool) 
        -> Result<(Vec<f64>,Vec<f64>), Error> 
{
    tau::tau_sanity_checks(&taus)?;
    
    let data = match is_fractionnal {
        false => data.clone(),
        true => utils::fractionnal_integral(data, 1.0_f64),
    };

    let mut i: u32 = 0;
    let mut devs: Vec<f64> = Vec::new();
    let mut errs: Vec<f64> = Vec::new();

    for i in 0..taus.len() {
        match deviation {
            Deviation::Allan => {
                if let Ok((dev,err)) = calc_adev(&data, taus[i], overlapping) {
                    devs.push(dev);
                    errs.push(err)
                } else {
                    break
                }
            },
            Deviation::ModifiedAdev => {
                if let Ok((dev,err)) = calc_mdev(&data, taus[i]) {
                    devs.push(dev);
                    errs.push(err)
                } else {
                    break
                }
            },
            Deviation::TimeDeviation => {
                if let Ok((dev,err)) = calc_tdev(&data, taus[i]) {
                    devs.push(dev);
                    errs.push(err)
                } else {
                    break
                }
            },
        }
    }
    Ok((devs, errs))
}

/// Computes Allan deviation @ given tau on input data.   
/// overlapping: true for overlapped deviation
fn calc_adev (data: &Vec<f64>, tau: f64, overlapping: bool) -> Result<(f64,f64), Error> {
    let tau_u: usize = tau as usize;
    let stride: usize = match overlapping {
        true => 1,
        false => tau as usize 
    };

    if tau_u > (data.len()-1) / 2 {
        return Err(Error::NotEnoughSamplesError)
    }

    let mut i: usize = 0;
    let mut n = 0.0_f64;
    let mut sum = 0.0_f64;

    while i < data.len() -2*tau_u {
        sum += (data[i + 2*tau_u] - 2.0_f64*data[i+tau_u] + data[i]).powf(2.0_f64);
        n += 1.0_f64;
        i += stride
    }
    
    sum /= 2.0_f64;
    let dev = sum.powf(0.5_f64 / n) / tau;
    Ok((dev, dev/n.powf(0.5_f64)))
}

/// Computes modified Allan deviation @ given tau on input data.   
/// Mdev is always computed in overlapping fashion
fn calc_mdev (data: &Vec<f64>, tau: f64) -> Result<(f64,f64), Error> {
    let tau_u: usize = tau as usize;
    if tau_u > (data.len()-1) / 2 {
        return Err(Error::NotEnoughSamplesError)
    }

    let mut i: usize = 0;
    let mut n = 0.0_f64;
    let (mut v, mut sum) = (0.0_f64, 0.0_f64);

    while (i < data.len() -2*tau_u) && (i < tau_u) {
        v += data[i + 2*tau_u] - 2.0_f64*data[i+tau_u] + data[i];
        i += 1
    }
    sum += v.powf(2.0_f64);
    n += 1.0_f64;

    i = 0;
    while i < data.len() -3*tau_u {
        sum += (data[i + 3*tau_u] - 3.0_f64*data[i+2*tau_u] + 3.0_f64*data[i+tau_u] - data[i]).powf(2.0_f64);
        n += 1.0_f64;
        i += 1 
    }
    sum /= 2.0_f64 * tau.powf(2.0_f64);

    let dev = sum.powf(0.5_f64 / n) / tau;
    Ok((dev, dev/n.powf(0.5_f64)))
}

/// Computes `tdev` time deviation
/// at desired `tau` offset (s)
fn calc_tdev (data: &Vec<f64>, tau: f64) -> Result<(f64,f64), Error> {
    let (mdev,err) = calc_mdev(data, tau)?;
    Ok((mdev * tau / (3.0_f64).powf(0.5_f64), err))
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_adev() {
        let mut data = utils::random(1024); 
        println!("DATA \n {:#?}", data);
        let taus = tau::tau_generator(tau::TauAxis::Octave, 128.0); 
        let dev = deviation(data, taus, Deviation::Allan, false, false);
        println!("ADEV \n {:#?}", dev)
    }
    
    #[test]
    fn test_mdev() {
        let mut data = utils::random(1024); 
        println!("DATA \n {:#?}", data);
        let taus = tau::tau_generator(tau::TauAxis::Octave, 128.0); 
        let dev = deviation(data, taus, Deviation::ModifiedAdev, false, false);
        println!("MDEV \n {:#?}", dev)
    }
    
    #[test]
    fn test_tdev() {
        let mut data = utils::random(1024); 
        println!("DATA \n {:#?}", data);
        let taus = tau::tau_generator(tau::TauAxis::Octave, 128.0); 
        let dev = deviation(data, taus, Deviation::TimeDeviation, false, false);
        println!("TDEV \n {:#?}", dev)
    }
}